login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form m*(8*m + 5), where m is an integer.
6

%I #32 Mar 18 2022 05:20:26

%S 0,3,13,22,42,57,87,108,148,175,225,258,318,357,427,472,552,603,693,

%T 750,850,913,1023,1092,1212,1287,1417,1498,1638,1725,1875,1968,2128,

%U 2227,2397,2502,2682,2793,2983,3100,3300,3423,3633,3762,3982,4117,4347,4488,4728,4875

%N Numbers of the form m*(8*m + 5), where m is an integer.

%C Equivalently, numbers k such that 32*k + 25 is a square. This means that 4*a(n) + 3 is a triangular number.

%C Interleaving of A139277 and A139272 (without 0).

%H Colin Barker, <a href="/A299645/b299645.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).

%F O.g.f.: x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2).

%F E.g.f.: (1 + 2*x - (1 - 8*x^2)*exp(2*x))*exp(-x)/4.

%F a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).

%F a(n) = (8*n*(n - 1) - (2*n - 1)*(-1)^n - 1)/4 = (2*n + (-1)^n - 1)*(4*n - 3*(-1)^n - 2)/4. Therefore, 3 and 13 are the only prime numbers in this sequence.

%F a(n) + a(n+1) = 4*n^2 for even n, otherwise a(n) + a(n+1) = 4*n^2 - 1.

%F From _Amiram Eldar_, Mar 18 2022: (Start)

%F Sum_{n>=2} 1/a(n) = 8/25 + (sqrt(2)-1)*Pi/5.

%F Sum_{n>=2} (-1)^n/a(n) = 8*log(2)/5 - sqrt(2)*log(2*sqrt(2)+3)/5 - 8/25. (End)

%p seq((exp(I*Pi*x)*(1-2*x)+8*(x-1)*x-1)/4, x=1..50); # _Peter Luschny_, Feb 27 2018

%t Table[(8 n (n - 1) - (2 n - 1) (-1)^n - 1)/4, {n, 1, 50}]

%o (PARI) vector(50, n, nn; (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4)

%o (PARI) concat(0, Vec(x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2) + O(x^60))) \\ _Colin Barker_, Feb 27 2018

%o (Sage) [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4 for n in (1..50)]

%o (Maxima) makelist((8*n*(n-1)-(2*n-1)*(-1)^n-1)/4, n, 1, 50);

%o (GAP) List([1..50], n -> (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4);

%o (Magma) [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4: n in [1..50]];

%o (Python) [(8*n*(n-1)-(2*n-1)*(-1)**n-1)/4 for n in range(1, 60)]

%o (Julia) [div((8n*(n-1)-(2n-1)*(-1)^n-1), 4) for n in 1:50] # _Peter Luschny_, Feb 27 2018

%Y Cf. A139272, A139277.

%Y Subsequence of A011861, A047222.

%Y Cf. numbers of the form m*(8*m + h): A154260 (h=1), A014494 (h=2), A274681 (h=3), A046092 (h=4), this sequence (h=5), 2*A074377 (h=6), A274979 (h=7).

%K nonn,easy

%O 1,2

%A _Bruno Berselli_, Feb 26 2018