OFFSET
0,1
COMMENTS
The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as A154295(n+1)^2 - a(n+1)*A154266(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [3n-2; {2, 1, 3n-3, 1, 2, 6n-4}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 05 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From Vincenzo Librandi, Feb 02 2012: (Start)
G.f.: (3 - 7*x + 22*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: (3 - x + 9*x^2)*exp(x). - Elmo R. Oliveira, Oct 31 2024
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {2, 19, 54}, 50] (* Vincenzo Librandi, Feb 02 2012 *)
Table[9n^2-10n+3, {n, 0, 50}] (* Harvey P. Dale, Feb 11 2023 *)
PROG
(PARI) a(n)=9*n^2-10*n+3 \\ Charles R Greathouse IV, Dec 27 2011
(Magma) I:=[2, 19, 54]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 02 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 06 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved