login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154262
a(n) = 9*n^2 - 10*n + 3.
4
3, 2, 19, 54, 107, 178, 267, 374, 499, 642, 803, 982, 1179, 1394, 1627, 1878, 2147, 2434, 2739, 3062, 3403, 3762, 4139, 4534, 4947, 5378, 5827, 6294, 6779, 7282, 7803, 8342, 8899, 9474, 10067, 10678, 11307, 11954, 12619, 13302, 14003, 14722, 15459, 16214, 16987
OFFSET
0,1
COMMENTS
The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as A154295(n+1)^2 - a(n+1)*A154266(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [3n-2; {2, 1, 3n-3, 1, 2, 6n-4}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 05 2022
FORMULA
From Vincenzo Librandi, Feb 02 2012: (Start)
G.f.: (3 - 7*x + 22*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: (3 - x + 9*x^2)*exp(x). - Elmo R. Oliveira, Oct 31 2024
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {2, 19, 54}, 50] (* Vincenzo Librandi, Feb 02 2012 *)
Table[9n^2-10n+3, {n, 0, 50}] (* Harvey P. Dale, Feb 11 2023 *)
PROG
(PARI) a(n)=9*n^2-10*n+3 \\ Charles R Greathouse IV, Dec 27 2011
(Magma) I:=[2, 19, 54]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 02 2012
CROSSREFS
Sequence in context: A090587 A094554 A223881 * A367548 A154261 A098655
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 06 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved