login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154266
a(n) = 27*n + 12.
4
12, 39, 66, 93, 120, 147, 174, 201, 228, 255, 282, 309, 336, 363, 390, 417, 444, 471, 498, 525, 552, 579, 606, 633, 660, 687, 714, 741, 768, 795, 822, 849, 876, 903, 930, 957, 984, 1011, 1038, 1065, 1092, 1119, 1146, 1173, 1200, 1227, 1254, 1281, 1308, 1335
OFFSET
0,1
COMMENTS
The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as A154295(n+1)^2 - A154262(n+1)*a(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012
FORMULA
From R. J. Mathar, Jan 05 2011: (Start)
G.f.: 3*(4 + 5*x)/(1-x)^2.
a(n) = 3*A017209(n). (End)
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 02 2012
E.g.f.: (27*x + 12)*exp(x). - G. C. Greubel, Sep 08 2016
MATHEMATICA
Range[12, 7000, 27] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)
LinearRecurrence[{2, -1}, {12, 39}, 50] (* Vincenzo Librandi, Feb 02 2012 *)
PROG
(PARI) a(n)=27*n+12 \\ Charles R Greathouse IV, Dec 28 2011
(Magma) I:=[12, 39]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 02 2012
CROSSREFS
Sequence in context: A167712 A209872 A186779 * A236267 A119094 A226348
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 06 2009
EXTENSIONS
119 replaced by 1119 - R. J. Mathar, Jan 07 2009
STATUS
approved