login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154295
a(n) = 81*n^2 - 90*n + 26.
4
26, 17, 170, 485, 962, 1601, 2402, 3365, 4490, 5777, 7226, 8837, 10610, 12545, 14642, 16901, 19322, 21905, 24650, 27557, 30626, 33857, 37250, 40805, 44522, 48401, 52442, 56645, 61010, 65537, 70226, 75077, 80090, 85265, 90602, 96101, 101762
OFFSET
0,1
COMMENTS
The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as a(n+1)^2 - A154262(n+1)*A154266(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012
FORMULA
a(n) = A002522(|9n-5|). - R. J. Mathar, Jan 07 2009
G.f.: (26 - 61*x + 197*x^2)/(1 - x)^3. - Vincenzo Librandi, Feb 03 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Feb 03 2012
E.g.f.: (26 - 9*x + 81*x^2)*exp(x). - G. C. Greubel, Sep 10 2016
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {26, 17, 170}, 40] (* Vincenzo Librandi, Feb 03 2012 *)
Table[81*n^2 - 90*n + 26, {n, 0, 25}] (* G. C. Greubel, Sep 10 2016 *)
PROG
(Magma) I:=[26, 17, 170]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 03 2012
(PARI) for(n=0, 22, print1(81*n^2-90*n+26", ")); \\ Vincenzo Librandi, Feb 03 2012
(PARI) x='x+O('x^99); Vec((26-61*x+197*x^2)/(1-x)^3) \\ Altug Alkan, Sep 10 2016
CROSSREFS
Sequence in context: A131083 A203597 A040652 * A331498 A277685 A072360
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 06 2009
EXTENSIONS
Corrected by Don Reble, Jun 16 2010
STATUS
approved