OFFSET
1,1
COMMENTS
Primes which are some triangular number A000217 divided by 33. Finiteness is shown with the same strategy as in A154297.
Original definition: Primes of the form : 1/x+2/x+3/x+4/x+5/x+6/x+7/x+..., x=33.
The corresponding m-values are m=11, 21, 33, 66 (cf. A154296). It is clear that for m>66, A000217(m)/33 = m(m+1)/66 cannot be a prime. - M. F. Hasler, Dec 31 2012
MATHEMATICA
lst={}; s=0; Do[s+=n/33; If[Floor[s]==s, If[PrimeQ[s], AppendTo[lst, s]]], {n, 0, 9!}]; lst
PROG
(PARI) select(x->denominator(x)==1 & isprime(x), vector(66, m, m^2+m)/66) \\ - M. F. Hasler, Dec 31 2012
CROSSREFS
KEYWORD
nonn,fini,full,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jan 06 2009
EXTENSIONS
Edited by M. F. Hasler, Dec 31 2012
STATUS
approved