login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283754 The smallest number k such that k*2^n mod 3^n = 1. 1
2, 7, 17, 76, 38, 262, 1589, 4075, 11879, 35464, 17732, 363160, 181580, 90790, 9611333, 11980120, 92083502, 175181914, 862431935, 2174608168, 1087304084, 543652042, 271826021, 235493860078, 117746930039, 1329806379184, 664903189592, 332451594796, 166225797398, 68713490263582, 446139009321089 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the coefficient "a" in the Diophantine equation with two coefficients a and b, a * 2^n - b * 3^n = 1.

LINKS

Robert Israel, Table of n, a(n) for n = 1..2095

FORMULA

a(n) = ((3^n + 1)/2)^n mod 3^n (proved).

Conjecture: 2*a(n+1)-a(n) = 3^n * A055620(n). - Robert Israel, Mar 28 2017

EXAMPLE

2 * 2^1 mod 3^1 = 1, 7 * 2^2 mod 3^2 =1, 17 * 2^3 mod 3^3 = 1...

MAPLE

seq(2^(-n) mod 3^n, n=1..100); # Robert Israel, Mar 28 2017

MATHEMATICA

Table[ PowerMod[ (3^n +1)/2, n, 3^n], {n, 30}] (* Robert G. Wilson v, Mar 28 2017 *)

PROG

(PARI) a(n)= my(z=3^n); lift( Mod((z + 1)/2, z)^n); \\ Joerg Arndt, Mar 24 2017

CROSSREFS

Cf. A055620.

Sequence in context: A216389 A154298 A225806 * A122382 A025554 A285810

Adjacent sequences:  A283751 A283752 A283753 * A283755 A283756 A283757

KEYWORD

nonn

AUTHOR

Joe Slater, Mar 23 2017

EXTENSIONS

Corrected and more terms from Joerg Arndt, Mar 24 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 17:45 EDT 2021. Contains 348033 sequences. (Running on oeis4.)