login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283754
The smallest number k such that k*2^n mod 3^n = 1.
1
2, 7, 17, 76, 38, 262, 1589, 4075, 11879, 35464, 17732, 363160, 181580, 90790, 9611333, 11980120, 92083502, 175181914, 862431935, 2174608168, 1087304084, 543652042, 271826021, 235493860078, 117746930039, 1329806379184, 664903189592, 332451594796, 166225797398, 68713490263582, 446139009321089
OFFSET
1,1
COMMENTS
a(n) is the coefficient "a" in the Diophantine equation with two coefficients a and b, a * 2^n - b * 3^n = 1.
LINKS
FORMULA
a(n) = ((3^n + 1)/2)^n mod 3^n (proved).
Conjecture: 2*a(n+1)-a(n) = 3^n * A055620(n). - Robert Israel, Mar 28 2017
EXAMPLE
2 * 2^1 mod 3^1 = 1, 7 * 2^2 mod 3^2 =1, 17 * 2^3 mod 3^3 = 1...
MAPLE
seq(2^(-n) mod 3^n, n=1..100); # Robert Israel, Mar 28 2017
MATHEMATICA
Table[ PowerMod[ (3^n +1)/2, n, 3^n], {n, 30}] (* Robert G. Wilson v, Mar 28 2017 *)
PROG
(PARI) a(n)= my(z=3^n); lift( Mod((z + 1)/2, z)^n); \\ Joerg Arndt, Mar 24 2017
CROSSREFS
Cf. A055620.
Sequence in context: A216389 A154298 A225806 * A122382 A025554 A285810
KEYWORD
nonn
AUTHOR
Joe Slater, Mar 23 2017
EXTENSIONS
Corrected and more terms from Joerg Arndt, Mar 24 2017
STATUS
approved