login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055620 Digits of an idempotent 6-adic number. 7
4, 4, 3, 5, 0, 2, 4, 3, 3, 3, 0, 4, 0, 0, 4, 1, 4, 2, 4, 3, 0, 0, 0, 5, 0, 3, 0, 0, 0, 2, 4, 1, 2, 2, 5, 1, 3, 3, 1, 5, 4, 2, 2, 4, 1, 5, 3, 5, 4, 3, 0, 3, 1, 5, 3, 2, 2, 5, 2, 1, 0, 0, 3, 0, 0, 1, 2, 3, 2, 4, 0, 1, 0, 1, 5, 4, 4, 5, 1, 3, 5, 4, 2, 5, 4, 0, 5, 1, 2, 0, 5, 4, 5, 3, 1, 5, 2, 1, 3, 3, 2, 3, 3, 5, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

( a(0) + a(1)*6 + a(2)*6^2 + ... )^k = a(0) + a(1)*6 + a(2)*6^2 + ... for each k. Apart from 0 and 1 in base 6 there are only 2 numbers with this property. For the other see A054869.

REFERENCES

V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.

LINKS

Kenny Lau, Table of n, a(n) for n = 0..9999

V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179

EXAMPLE

(a(0)+a(1)*6+a(2)*6^2+a(3)*6^3)^2=a(0)+a(1)*6+a(2)*6^2+a(3)*6^3 mod 6^4 because 1478656 = 1216 mod 1296.

PROG

(Python)

n=10000; res=pow((3**n+1)//2, n, 3**n)*2**n

for i in range(n):print(i, res%6); res//=6

# Kenny Lau, Jun 09 2018

CROSSREFS

The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.

Sequence in context: A106147 A202393 A073321 * A072420 A258075 A286296

Adjacent sequences:  A055617 A055618 A055619 * A055621 A055622 A055623

KEYWORD

nonn,base

AUTHOR

Paolo Dominici (pl.dm(AT)libero.it), Jun 04 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 9 10:52 EDT 2020. Contains 333348 sequences. (Running on oeis4.)