|
|
A055620
|
|
Digits of an idempotent 6-adic number.
|
|
7
|
|
|
4, 4, 3, 5, 0, 2, 4, 3, 3, 3, 0, 4, 0, 0, 4, 1, 4, 2, 4, 3, 0, 0, 0, 5, 0, 3, 0, 0, 0, 2, 4, 1, 2, 2, 5, 1, 3, 3, 1, 5, 4, 2, 2, 4, 1, 5, 3, 5, 4, 3, 0, 3, 1, 5, 3, 2, 2, 5, 2, 1, 0, 0, 3, 0, 0, 1, 2, 3, 2, 4, 0, 1, 0, 1, 5, 4, 4, 5, 1, 3, 5, 4, 2, 5, 4, 0, 5, 1, 2, 0, 5, 4, 5, 3, 1, 5, 2, 1, 3, 3, 2, 3, 3, 5, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
( a(0) + a(1)*6 + a(2)*6^2 + ... )^k = a(0) + a(1)*6 + a(2)*6^2 + ... for each k. Apart from 0 and 1 in base 6 there are only 2 numbers with this property. For the other see A054869.
|
|
REFERENCES
|
V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
|
|
LINKS
|
|
|
FORMULA
|
If A is the 6-adic number, A == 4^(3^n) mod 6^n. - Robert Dawson, Oct 28 2022
|
|
EXAMPLE
|
(a(0) + a(1)*6 + a(2)*6^2 + a(3)*6^3)^2 == (a(0) + a(1)*6 + a(2)*6^2 + a(3)*6^3) mod 6^4 because 1478656 == 1216 (mod 1296).
|
|
PROG
|
(Python)
n=10000; res=pow((3**n+1)//2, n, 3**n)*2**n
for i in range(n):print(i, res%6); res//=6
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Paolo Dominici (pl.dm(AT)libero.it), Jun 04 2000
|
|
STATUS
|
approved
|
|
|
|