login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154292
Integers of the form m*(6*m -+ 1)/2.
3
11, 13, 46, 50, 105, 111, 188, 196, 295, 305, 426, 438, 581, 595, 760, 776, 963, 981, 1190, 1210, 1441, 1463, 1716, 1740, 2015, 2041, 2338, 2366, 2685, 2715, 3056, 3088, 3451, 3485, 3870, 3906, 4313, 4351, 4780, 4820, 5271, 5313, 5786, 5830, 6325, 6371
OFFSET
1,1
FORMULA
From Colin Barker, Feb 26 2016: (Start)
a(n) = (12*n^2 - 10*(-1)^n*n + 12*n - 5*(-1)^n + 5)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
G.f.: x*(11 + 2*x + 11*x^2) / ((1-x)^3*(1+x)^2). (End)
E.g.f.: (1/4)*(-5 + 10*x + (5 + 24*x + 12*x^2)*exp(2*x))*exp(-x). - G. C. Greubel, Sep 10 2016
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=1} 1/a(n) = 131/11 - (2+sqrt(3))*Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = 133/11 - 3*log(12) - 2*sqrt(3)*log(2+sqrt(3)). (End)
MATHEMATICA
Flatten[Table[{n (6n-1)/2, n (6n+1)/2}, {n, 2, 50, 2}]] (* Harvey P. Dale, Jan 19 2013 *)
PROG
(PARI) Vec(x*(11+2*x+11*x^2)/((1-x)^3*(1+x)^2) + O(x^60)) \\ Colin Barker, Feb 26 2016
(Magma) &cat[[n*(6*n-1) div 2, n*(6*n+1) div 2]: n in [2..60 by 2]]; // Vincenzo Librandi, Sep 10 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved