OFFSET
0,2
COMMENTS
Positions a(n) of hexagonal numbers such that h(a(n)) = h(a(n)-1) + h(4*n+1), where h = A000384.
First bisection of A057029. The sequence contains infinitely many squares: 1, 676, 779689, 899760016, ... [Bruno Berselli, Jan 24 2014]
LINKS
FORMULA
From Colin Barker, Jan 21 2014: (Start)
G.f.: -(6*x^2 + 9*x + 1)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(1 + 11*x + 8*x^2). - Elmo R. Oliveira, Oct 19 2024
MATHEMATICA
Table[8 n^2 + 3 n + 1, {n, 0, 50}] (* Bruno Berselli, Jan 24 2014 *)
LinearRecurrence[{3, -3, 1}, {1, 12, 39}, 50] (* Harvey P. Dale, May 26 2019 *)
PROG
(PARI) Vec(-(6*x^2+9*x+1)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jan 21 2014
(Magma) [8*n^2+3*n+1: n in [0..50]]; // Bruno Berselli, Jan 24 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, Jan 21 2014
EXTENSIONS
More terms from Colin Barker, Jan 21 2014
a(44)-a(45) from Elmo R. Oliveira, Oct 19 2024
STATUS
approved