login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236267
a(n) = 8*n^2 + 3*n + 1.
1
1, 12, 39, 82, 141, 216, 307, 414, 537, 676, 831, 1002, 1189, 1392, 1611, 1846, 2097, 2364, 2647, 2946, 3261, 3592, 3939, 4302, 4681, 5076, 5487, 5914, 6357, 6816, 7291, 7782, 8289, 8812, 9351, 9906, 10477, 11064, 11667, 12286, 12921, 13572, 14239, 14922, 15621, 16336
OFFSET
0,2
COMMENTS
Positions a(n) of hexagonal numbers such that h(a(n)) = h(a(n)-1) + h(4*n+1), where h = A000384.
First bisection of A057029. The sequence contains infinitely many squares: 1, 676, 779689, 899760016, ... [Bruno Berselli, Jan 24 2014]
FORMULA
From Colin Barker, Jan 21 2014: (Start)
G.f.: -(6*x^2 + 9*x + 1)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(1 + 11*x + 8*x^2). - Elmo R. Oliveira, Oct 19 2024
EXAMPLE
For n=5, A000384(a(5)) = 93096 = A000384(a(5)-1) + A000384(4*5+1) = 92235 + 861.
MATHEMATICA
Table[8 n^2 + 3 n + 1, {n, 0, 50}] (* Bruno Berselli, Jan 24 2014 *)
LinearRecurrence[{3, -3, 1}, {1, 12, 39}, 50] (* Harvey P. Dale, May 26 2019 *)
PROG
(PARI) Vec(-(6*x^2+9*x+1)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jan 21 2014
(Magma) [8*n^2+3*n+1: n in [0..50]]; // Bruno Berselli, Jan 24 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, Jan 21 2014
EXTENSIONS
More terms from Colin Barker, Jan 21 2014
a(44)-a(45) from Elmo R. Oliveira, Oct 19 2024
STATUS
approved