login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236264
Even indices of Fibonacci numbers which are the sum of two squares.
1
0, 2, 6, 12, 14, 26, 38, 62, 74, 86, 98, 122, 134, 146, 158, 182, 222, 254, 326, 338, 366, 398, 446, 614, 626, 698, 722, 794, 866, 1022, 1046, 1082, 1226, 1238, 1418, 1646, 1814, 2174, 2246, 2258, 2294, 2426, 2558
OFFSET
1,2
COMMENTS
The first 10 such Fibonacci numbers are 0, 1, 8, 144, 377, 121393, 39088169, 4052739537881, 1304969544928657, 420196140727489673.
Ballot & Luca (Proposition 1) show that this sequence has asymptotic density 0. - Charles R Greathouse IV, Jan 21 2014
a(43) >= 2558. Determining this term requires factoring the Lucas number L_1279. - Charles R Greathouse IV, Jan 21 2014
3002 <= a(44) <= 3302. 3302, 3698, 4898 are terms. - Chai Wah Wu, Jul 23 2020
LINKS
Christian Ballot and Florian Luca, On the equation x^2+dy^2=Fn, Acta Arith. 127 (2007), 145-155.
FORMULA
a(n) = 2*A124132(n-1).
EXAMPLE
Fibonacci(14) = 377 = 19^2 + 4^2, so 14 is in the sequence.
MATHEMATICA
Reap[For[n = 0, n <= 400, n = n+2, If[Reduce[Fibonacci[n] == x^2 + y^2, {x, y}, Integers] =!= False, Print[n]; Sow[n]]]][[2, 1]]
PROG
(PARI) is(n)=if(n%2, return(0)); my(f=factor(fibonacci(n))); for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(0))); 1 \\ Charles R Greathouse IV, Jan 21 2014
(PARI) default(factor_add_primes, 1);
is(n)={
if(n%2, return(0));
my(f=fibonacci(n), t);
if(f%4==3, return(0));
forprime(p=2, min(log(f)^2, 1e5),
if(f%p==0,
t=valuation(f, p);
if(p%4==3&&t%2, return(0));
f/=p^t;
if(f%4==3, return(0))
)
);
fordiv(n, d,
if(d==n, break);
t=factor(fibonacci(d))[, 1];
for(i=1, #t,
if(t[i]%4==3 && valuation(f, t[i])%2, return(0));
f/=t[i]^valuation(f, t[i]);
if(f%4==3, return(0))
)
);
f=factor(f);
for(i=1, #f[, 1],
if(f[i, 2]%2&&f[i, 1]%4==3, return(0))
);
1
}; \\ Charles R Greathouse IV, Jan 21 2014
(Python)
from itertools import count, islice
from sympy import factorint, fibonacci
def A236264_gen(): # generator of terms
return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(fibonacci(n)).items()), count(0, 2))
a236264_list = list(islice(A236264_gen(), 10)) # Chai Wah Wu, Jun 27 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(32)-a(42) from Charles R Greathouse IV, Jan 21 2014
a(43) from Chai Wah Wu, Jul 23 2020
STATUS
approved