OFFSET
1,2
COMMENTS
The first 10 such Fibonacci numbers are 0, 1, 8, 144, 377, 121393, 39088169, 4052739537881, 1304969544928657, 420196140727489673.
Ballot & Luca (Proposition 1) show that this sequence has asymptotic density 0. - Charles R Greathouse IV, Jan 21 2014
a(43) >= 2558. Determining this term requires factoring the Lucas number L_1279. - Charles R Greathouse IV, Jan 21 2014
3002 <= a(44) <= 3302. 3302, 3698, 4898 are terms. - Chai Wah Wu, Jul 23 2020
LINKS
Christian Ballot and Florian Luca, On the equation x^2+dy^2=Fn, Acta Arith. 127 (2007), 145-155.
Kevin O'Bryant, Which Fibonacci numbers are the sum of two squares?, MathOverflow.
FORMULA
a(n) = 2*A124132(n-1).
EXAMPLE
Fibonacci(14) = 377 = 19^2 + 4^2, so 14 is in the sequence.
MATHEMATICA
Reap[For[n = 0, n <= 400, n = n+2, If[Reduce[Fibonacci[n] == x^2 + y^2, {x, y}, Integers] =!= False, Print[n]; Sow[n]]]][[2, 1]]
PROG
(PARI) is(n)=if(n%2, return(0)); my(f=factor(fibonacci(n))); for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(0))); 1 \\ Charles R Greathouse IV, Jan 21 2014
(PARI) default(factor_add_primes, 1);
is(n)={
if(n%2, return(0));
my(f=fibonacci(n), t);
if(f%4==3, return(0));
forprime(p=2, min(log(f)^2, 1e5),
if(f%p==0,
t=valuation(f, p);
if(p%4==3&&t%2, return(0));
f/=p^t;
if(f%4==3, return(0))
)
);
fordiv(n, d,
if(d==n, break);
t=factor(fibonacci(d))[, 1];
for(i=1, #t,
if(t[i]%4==3 && valuation(f, t[i])%2, return(0));
f/=t[i]^valuation(f, t[i]);
if(f%4==3, return(0))
)
);
f=factor(f);
for(i=1, #f[, 1],
if(f[i, 2]%2&&f[i, 1]%4==3, return(0))
);
1
}; \\ Charles R Greathouse IV, Jan 21 2014
(Python)
from itertools import count, islice
from sympy import factorint, fibonacci
def A236264_gen(): # generator of terms
return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(fibonacci(n)).items()), count(0, 2))
a236264_list = list(islice(A236264_gen(), 10)) # Chai Wah Wu, Jun 27 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jean-François Alcover, Jan 21 2014
EXTENSIONS
a(32)-a(42) from Charles R Greathouse IV, Jan 21 2014
a(43) from Chai Wah Wu, Jul 23 2020
STATUS
approved