

A236265


a(n) = {0 < k < n: m = phi(k)/2 + phi(nk)/8 is an integer with m!  prime(m) prime}, where phi(.) is Euler's totient function.


3



0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 1, 2, 2, 4, 3, 5, 1, 3, 2, 3, 3, 4, 5, 9, 5, 5, 6, 7, 8, 8, 8, 5, 7, 5, 8, 8, 5, 5, 9, 8, 6, 6, 9, 8, 10, 6, 9, 4, 6, 9, 9, 8, 10, 9, 6, 10, 7, 8, 12, 11, 10, 8, 11, 9, 12, 7, 13, 12, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,22


COMMENTS

It seems that a(n) > 0 for all n > 21. If a(n) > 0 infinitely often, then there are infinitely many positive integers m with m!  prime(m) prime.
See also A236263 for a similar sequence.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..7000


EXAMPLE

a(23) = 1 since phi(7)/2 + phi(16)/8 = 3 + 1 = 4 with 4!  prime(4) = 24  7 = 17 prime.
a(26) = 1 since phi(9)/2 + phi(17)/8 = 3 + 2 = 5 with 5!  prime(5) = 120  11 = 109 prime.


MATHEMATICA

q[n_]:=IntegerQ[n]&&PrimeQ[n!Prime[n]]
f[n_, k_]:=EulerPhi[k]/2+EulerPhi[nk]/8
a[n_]:=Sum[If[q[f[n, k]], 1, 0], {k, 1, n1}]
Table[a[n], {n, 1, 100}]


CROSSREFS

Cf. A000010, A000040, A000142, A063499, A064278, A064401, A236241, A236256, A236263.
Sequence in context: A280521 A278043 A014643 * A238645 A118382 A007723
Adjacent sequences: A236262 A236263 A236264 * A236266 A236267 A236268


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Jan 21 2014


STATUS

approved



