login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236256
a(n) = |{0 < k < n: m = phi(k) + phi(n-k)/4 is an integer with C(2*m, m) - prime(m) prime}|, where C(2*m, m) = (2*m)!/(m!)^2.
9
0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 1, 2, 2, 3, 3, 2, 5, 2, 2, 2, 4, 3, 3, 3, 2, 2, 3, 4, 5, 1, 5, 7, 5, 2, 4, 6, 7, 4, 3, 3, 4, 5, 6, 3, 3, 3, 5, 3, 4, 1, 5, 3, 0, 4, 2, 1, 3, 2, 4, 2, 5, 1, 4, 3, 5, 1, 5, 1, 2, 0, 2, 3, 1, 3, 4, 1, 2, 3, 3, 3, 2, 3, 2, 2
OFFSET
1,10
COMMENTS
Conjecture: a(n) > 0 for all n > 410.
This implies that there are infinitely many positive integers m with C(2*m, m) - prime(m) prime. We have verified the conjecture for n up to 51000.
See A236248 for a list of known numbers m with C(2*m, m) - prime(m) prime.
See also A236249 for those primes of the form C(2*m, m) - prime(m).
EXAMPLE
a(12) = 1 since phi(2) + phi(10)/4 = 1 + 1 = 2 with C(2*2, 2) - prime(2) = 6 - 3 = 3 prime.
a(33) = 1 since phi(1) + phi(32)/4 = 1 + 4 = 5 with C(2*5, 5) - prime(5) = 252 - 11 = 241 prime.
a(697) = 1 since phi(452) + phi(697-452)/4 = 224 + 42 = 266 with C(2*266, 266) - prime(266) = C(532, 266) - 1699 prime.
MATHEMATICA
p[n_]:=IntegerQ[n]&&PrimeQ[Binomial[2n, n]-Prime[n]]
f[n_, k_]:=EulerPhi[k]+EulerPhi[n-k]/4
a[n_]:=Sum[If[p[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 21 2014
STATUS
approved