login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317086 Number of normal integer partitions of n whose sequence of multiplicities is a palindrome. 15
1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 4, 1, 4, 5, 4, 1, 7, 1, 8, 6, 6, 1, 10, 5, 7, 8, 11, 1, 20, 1, 9, 12, 9, 13, 25, 1, 10, 17, 21, 1, 37, 1, 21, 36, 12, 1, 44, 16, 23, 30, 33, 1, 53, 17, 55, 38, 15, 1, 103, 1, 16, 95, 51, 28, 69, 1, 73, 57, 82 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A partition is normal if its parts span an initial interval of positive integers.

a(n) = 1 if and only if n = 0, 1, 2, 4 or a prime > 3. - Chai Wah Wu, Jun 22 2020

From David A. Corneth, Jul 08 2020: (Start)

Let [f_1, f_2, ,..., f_i, ..., f_m] be the multiplicities of parts i in a partition of Sum_{i=1..m} (f_i * i). Then, as the sequence of multiplicities is a palindrome, we have f_1 = f_m, ..., f_i = f_(m+1-i). So the sum is f_1 * (1 + m) + f_2 * (2 + m-1) + ... + f_(floor(m/2)) * m/2 (the last term depending on the parity of m.). This way it becomes a list of diophantine equations for which we look for the number of solutions.

For example, for m = 4 we look for solutions to the diophantine equation 5 * (c + d) = n where c, d are positive integers >= 1. A similar technique is used in A254524. (End)

LINKS

David A. Corneth, Table of n, a(n) for n = 0..9999 (first 215 terms from Chai Wah Wu)

Wikipedia, Palindrome

EXAMPLE

The a(20) = 8 partitions:

(44432111), (44332211), (43332221),

(3333221111), (3332222111), (3322222211), (3222222221),

(11111111111111111111).

MATHEMATICA

Table[Length[Select[IntegerPartitions[n], And[Union[#]==Range[First[#]], Length/@Split[#]==Reverse[Length/@Split[#]]]&]], {n, 30}]

PROG

(Python)

from sympy.utilities.iterables import partitions

from sympy import integer_nthroot, isprime

def A317086(n):

    if n > 3 and isprime(n):

        return 1

    else:

        c = 1

        for d in partitions(n, k=integer_nthroot(2*n, 2)[0], m=n*2//3):

            l = len(d)

            if l > 0:

                k = max(d)

                if l == k:

                    for i in range(k//2):

                        if d[i+1] != d[k-i]:

                            break

                    else:

                        c += 1

        return c # Chai Wah Wu, Jun 22 2020

CROSSREFS

Cf. A000009, A000041, A000837, A025065, A055932, A242414, A254524, A317085, A317087.

Sequence in context: A229897 A139462 A236256 * A131376 A025840 A188542

Adjacent sequences:  A317083 A317084 A317085 * A317087 A317088 A317089

KEYWORD

nonn,nice

AUTHOR

Gus Wiseman, Jul 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 18:53 EDT 2021. Contains 343050 sequences. (Running on oeis4.)