login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317087
Numbers whose prime factors span an initial interval of prime numbers and whose sequence of prime multiplicities is a palindrome.
16
1, 2, 4, 6, 8, 16, 30, 32, 36, 64, 90, 128, 210, 216, 256, 270, 300, 512, 810, 900, 1024, 1296, 2048, 2310, 2430, 2700, 2940, 3000, 3150, 4096, 7290, 7776, 8100, 8192, 9000, 11550, 16384, 21870, 24300, 27000, 30000, 30030, 32768, 41160, 44100, 46656, 47250, 48510
OFFSET
1,2
COMMENTS
3^m*10^k for k, m > 0 are terms of this sequence. - Chai Wah Wu, Jun 23 2020
LINKS
Wikipedia, Palindrome
EXAMPLE
The sequence of rows of A296150 indexed by the terms of this sequence begins: (1), (11), (21), (111), (1111), (321), (11111), (2211), (111111), (3221), (1111111), (4321), (222111), (11111111), (32221), (33211), (111111111), (322221), (332211).
MATHEMATICA
nrmpalQ[n_]:=With[{f=If[n==1, {}, FactorInteger[n]]}, And[PrimePi/@ Sort[First/@f] == Range[ Length[f]], Reverse[Last/@f] == Last/@f]]; Select[Range[100], nrmpalQ]
upto = 10^20; pL[n_] := Block[{p = Prime@Range@n, h = Ceiling[n/2]}, Take[p, h] Reverse@ If[n == 2 h, Take[p, -h], Prepend[ Take[p, 1-h], 1]]]; ric[v_, p_] := If[p == {}, AppendTo[L, v], Block[{w = v}, While[w <= upto, ric[w, Rest@ p]; w *= First@ p]]]; np = 1; L = {1}; While[(b = Times @@ Prime[Range@ np]) <= upto, ric[b, pL[np++]]]; Sort[L] (* Giovanni Resta, Jun 23 2020 *)
PROG
(Python)
from sympy import factorint, primepi
A317087_list = [1]
for n in range(1, 10**5):
d = factorint(n)
k, l = sorted(d.keys()), len(d)
if l > 0 and l == primepi(max(d)):
for i in range(l//2):
if d[k[i]] != d[k[l-i-1]]:
break
else:
A317087_list.append(n) # Chai Wah Wu, Jun 23 2020
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 21 2018
STATUS
approved