login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296993
Numbers k such that k^3 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.
3
1, 2, 4, 6, 8, 16, 24, 32, 64, 96, 128, 256, 288, 384, 512, 1024, 1536, 2048, 4096, 6144, 8192, 16384, 18432, 24576, 32768, 65536, 98304, 131072, 172032, 262144, 276480, 393216, 524288, 1048576, 1179648, 1572864, 1935360, 2097152, 2621440, 3538944, 4194304
OFFSET
1,2
COMMENTS
2^k is a term for k >= 0.
LINKS
Eric Weisstein's World of Mathematics, Tau Function.
PROG
(Python)
from itertools import count, islice
from sympy import divisor_sigma
def A296993_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n: not -24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2)))*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1, m))) % n**3, count(max(startvalue, 1)))
A296993_list = list(islice(A296993_gen(), 10)) # Chai Wah Wu, Nov 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 22 2017
STATUS
approved