login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316225 Numbers n that divide the sum of sums of elements of all subsets of divisors of n (A229335). 1
1, 2, 4, 6, 8, 16, 24, 28, 32, 40, 64, 96, 120, 128, 224, 256, 288, 360, 384, 496, 512, 640, 672, 1024, 1536, 1792, 1920, 2016, 2048, 2176, 3744, 4096, 4320, 4680, 5632, 5760, 6144, 6528, 8128, 8192, 10240, 10880, 14336, 15872, 16384, 16896, 18432, 18688 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Harborth proved that this sequence is infinite. He showed that the terms are numbers n such that n|sigma(n)*2^(d(n) - 1), where d(n) is the number of divisors of n (A000005) and sigma(n) is their sum (A000203), and that the even terms, numbers of the form r*2^m where r is odd and m > 0, are those with m = ord_2(r/gcd(r, sigma(r)))*i with i = 1, 2, ... (ord_2(k) is the multiplicative order of 2 mod k, A002326). Thus this sequence includes all the powers of 2, all the numbers of the form n = 2^m*(2^(m + 1) - 1) which include the even perfect numbers.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..500

Heiko Harborth, Eine Bemerkung zu den vollkommenen Zahlen, Elemente der Mathematik, Vol. 31 (1976), pp. 119-121 (in German).

MATHEMATICA

divSumSubQ[n_] := Divisible[DivisorSigma[1, n] * 2^(DivisorSigma[0, n] - 1), n]; Select[Range[100000], divSumSubQ]

PROG

(PARI) isok(n) = (sigma(n)*2^(numdiv(n)-1) % n) == 0; \\ Michel Marcus, Dec 21 2018

CROSSREFS

Cf. A000005, A000203, A000396, A002326, A229335.

Sequence in context: A070034 A329798 A064408 * A100685 A296993 A068799

Adjacent sequences:  A316222 A316223 A316224 * A316226 A316227 A316228

KEYWORD

nonn

AUTHOR

Amiram Eldar, Dec 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 15:32 EST 2020. Contains 331998 sequences. (Running on oeis4.)