login
A379169
Let m the concatenation, in ascending order, of the divisors of k written in base 2 and then converted to base 10. Sequence lists k which divide m.
1
1, 2, 4, 6, 8, 16, 21, 32, 48, 52, 56, 64, 99, 110, 128, 168, 198, 256, 336, 384, 512, 656, 960, 1024, 1376, 1792, 1820, 1953, 2048, 3072, 3456, 3744, 4096, 4270, 4448, 4601, 4672, 6526, 8192, 8704, 11144, 11264, 12800, 13684, 16384, 19712, 24576, 32768, 37116
OFFSET
1,2
COMMENTS
Powers of 2 are part of the sequence.
EXAMPLE
Divisors of 6 are 1, 2, 3, 6, which in base 2 are 1, 10, 11, 110. Their concatenation is 11011110 which in base 10 is 222. Finally 222/6 = 37 is an integer, so 6 is a member of the sequence.
MAPLE
with(numtheory): P:=proc(q) global a, b, c, k, n, v; v:=[];
for n from 1 to q do a:=sort([op(divisors(n))]); b:=0;
for k from 1 to nops(a) do c:=convert(a[k], binary, decimal); b:=b*10^length(c)+c; od;
if frac(convert(b, decimal, binary)/n)=0 then v:=[op(v), n]; fi;
op(v); od; end: P(37116);
MATHEMATICA
A379169Q[k_] := Divisible[FromDigits[StringJoin[IntegerString[Divisors[k], 2]], 2], k];
Select[Range[50000], A379169Q] (* Paolo Xausa, Jan 29 2025 *)
CROSSREFS
KEYWORD
nonn,easy,base,changed
AUTHOR
Paolo P. Lava, Dec 17 2024
STATUS
approved