login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316227
Composite numbers k for which no nontrivial divisor shares any digits with k.
2
4, 6, 8, 9, 10, 14, 16, 18, 21, 27, 34, 38, 46, 49, 54, 56, 57, 58, 68, 69, 76, 78, 81, 86, 87, 106, 111, 116, 118, 129, 134, 146, 158, 161, 166, 177, 188, 201, 219, 247, 249, 259, 267, 289, 323, 329, 334, 356, 358, 388, 413, 446, 454, 458, 466, 477, 478, 489
OFFSET
1,1
COMMENTS
A nontrivial divisor of k means a divisor greater than 1 and less than k.
LINKS
EXAMPLE
The nontrivial divisors of 54 are 2, 3, 6, 9, 18, and 27, none of which have a digit 5 or 4.
The nontrivial divisors of 248629501 are 337 and 737773.
The nontrivial divisors of 321810649 are 557 and 577757.
MAPLE
filter:= proc(n) local S;
if isprime(n) then return false fi;
S:= convert(convert(n, base, 10), set);
andmap(d -> convert(convert(d, base, 10), set) intersect S = {}, numtheory:-divisors(n) minus {1, n})
end proc:
select(filter, [$4..1000]); # Robert Israel, Jul 22 2018
MATHEMATICA
MaxCheck = 1000; (* modify as desired *)
ResultList = {};
Do[
If[
Not[PrimeQ[k]] &&
Intersection[
Flatten[
Map[
IntegerDigits,
Complement[Divisors[k], {1, k}]
]
],
IntegerDigits[k]
] == {},
ResultList = Append[ResultList, k]
],
{k, 2, MaxCheck}];
ResultList
(* or *) Select[Range@500, CompositeQ@# && Intersection[ IntegerDigits@#, Flatten@ IntegerDigits@ Most@ Rest@ Divisors@ #] == {} &] (* Giovanni Resta, Jun 27 2018 *)
PROG
(PARI) isok(n) = {my(d=divisors(n), dd = Set(digits(n))); for (k=2, #d-1, if (#setintersect(Set(digits(d[k])), dd), return (0)); ); return (1); }
lista(nn) = {forcomposite(n=1, nn, if (isok(n), print1(n, ", ")); ); } \\ Michel Marcus, Jul 03 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jason Zimba, Jun 27 2018
STATUS
approved