login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035139
Digits of prime factors of k do not appear in k.
7
1, 4, 6, 8, 9, 10, 14, 16, 18, 21, 27, 34, 38, 40, 44, 46, 48, 49, 54, 56, 57, 58, 60, 64, 66, 68, 69, 76, 78, 80, 81, 84, 86, 87, 88, 90, 96, 98, 99, 100, 106, 108, 111, 116, 118, 129, 134, 140, 144, 146, 148, 158, 160, 161, 166, 168, 174, 177, 180, 184, 188, 189, 196
OFFSET
1,2
LINKS
EXAMPLE
161 = 7 * 23 since {2,3,7} and {1,6} are separate digit sets.
MAPLE
q:= n-> (f-> is(map(f, numtheory[factorset](n)) intersect
{f(n)}={}))(d-> convert(d, base, 10)[]):
select(q, [$1..200])[]; # Alois P. Heinz, Oct 11 2021
MATHEMATICA
Fac[n_] := Flatten[IntegerDigits[Take[FactorInteger[n], All, 1]]]; t={1}; Do[ If[!PrimeQ[n] && Intersection[Fac[n], IntegerDigits[n]] == {}, AppendTo[t, n]], {n, 2, 196}]; t (* Jayanta Basu, May 02 2013 *)
PROG
(Magma) [k:k in [1..200]| forall{a: a in PrimeDivisors(k)|Set(Intseq(a)) meet Set(Intseq(k)) eq {}}]; // Marius A. Burtea, Oct 08 2019
(Python)
from sympy import factorint
def ok(n):
return set(str(n)) & set("".join(str(p) for p in factorint(n))) == set()
print(list(filter(ok, range(1601)))) # Michael S. Branicky, Oct 11 2021
(PARI) digsf(n) = my(f=factor(n), list=List()); for (k=1, #f~, my(dk=digits(f[k, 1])); for (i=1, f[k, 2], for (j=1, #dk, listput(list, dk[j])))); Vec(list);
isok(m) = my(df=digsf(m), d=digits(m)); (#setintersect(Set(df), Set(d)) == 0); \\ Michel Marcus, Oct 11 2021
CROSSREFS
Sequence in context: A359982 A276628 A050695 * A316227 A062115 A141613
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Nov 15 1998
EXTENSIONS
Offset corrected and a(1) added by Giovanni Resta, May 02 2013
STATUS
approved