login
A035139
Digits of prime factors of k do not appear in k.
7
1, 4, 6, 8, 9, 10, 14, 16, 18, 21, 27, 34, 38, 40, 44, 46, 48, 49, 54, 56, 57, 58, 60, 64, 66, 68, 69, 76, 78, 80, 81, 84, 86, 87, 88, 90, 96, 98, 99, 100, 106, 108, 111, 116, 118, 129, 134, 140, 144, 146, 148, 158, 160, 161, 166, 168, 174, 177, 180, 184, 188, 189, 196
OFFSET
1,2
LINKS
EXAMPLE
161 = 7 * 23 since {2,3,7} and {1,6} are separate digit sets.
MAPLE
q:= n-> (f-> is(map(f, numtheory[factorset](n)) intersect
{f(n)}={}))(d-> convert(d, base, 10)[]):
select(q, [$1..200])[]; # Alois P. Heinz, Oct 11 2021
MATHEMATICA
Fac[n_] := Flatten[IntegerDigits[Take[FactorInteger[n], All, 1]]]; t={1}; Do[ If[!PrimeQ[n] && Intersection[Fac[n], IntegerDigits[n]] == {}, AppendTo[t, n]], {n, 2, 196}]; t (* Jayanta Basu, May 02 2013 *)
PROG
(Magma) [k:k in [1..200]| forall{a: a in PrimeDivisors(k)|Set(Intseq(a)) meet Set(Intseq(k)) eq {}}]; // Marius A. Burtea, Oct 08 2019
(Python)
from sympy import factorint
def ok(n):
return set(str(n)) & set("".join(str(p) for p in factorint(n))) == set()
print(list(filter(ok, range(1601)))) # Michael S. Branicky, Oct 11 2021
(PARI) digsf(n) = my(f=factor(n), list=List()); for (k=1, #f~, my(dk=digits(f[k, 1])); for (i=1, f[k, 2], for (j=1, #dk, listput(list, dk[j])))); Vec(list);
isok(m) = my(df=digsf(m), d=digits(m)); (#setintersect(Set(df), Set(d)) == 0); \\ Michel Marcus, Oct 11 2021
CROSSREFS
Sequence in context: A359982 A276628 A050695 * A316227 A062115 A141613
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Nov 15 1998
EXTENSIONS
Offset corrected and a(1) added by Giovanni Resta, May 02 2013
STATUS
approved