login
Numbers k such that k^3 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.
3

%I #17 Nov 09 2022 00:06:07

%S 1,2,4,6,8,16,24,32,64,96,128,256,288,384,512,1024,1536,2048,4096,

%T 6144,8192,16384,18432,24576,32768,65536,98304,131072,172032,262144,

%U 276480,393216,524288,1048576,1179648,1572864,1935360,2097152,2621440,3538944,4194304

%N Numbers k such that k^3 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

%C 2^k is a term for k >= 0.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TauFunction.html">Tau Function.</a>

%o (Python)

%o from itertools import count, islice

%o from sympy import divisor_sigma

%o def A296993_gen(startvalue=1): # generator of terms >= startvalue

%o return filter(lambda n: not -24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2)))*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) % n**3, count(max(startvalue,1)))

%o A296993_list = list(islice(A296993_gen(),10)) # _Chai Wah Wu_, Nov 08 2022

%Y Cf. A000594, A063938, A296991, A296992.

%K nonn

%O 1,2

%A _Seiichi Manyama_, Dec 22 2017