Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Jun 28 2022 01:48:18
%S 0,2,6,12,14,26,38,62,74,86,98,122,134,146,158,182,222,254,326,338,
%T 366,398,446,614,626,698,722,794,866,1022,1046,1082,1226,1238,1418,
%U 1646,1814,2174,2246,2258,2294,2426,2558
%N Even indices of Fibonacci numbers which are the sum of two squares.
%C The first 10 such Fibonacci numbers are 0, 1, 8, 144, 377, 121393, 39088169, 4052739537881, 1304969544928657, 420196140727489673.
%C Ballot & Luca (Proposition 1) show that this sequence has asymptotic density 0. - _Charles R Greathouse IV_, Jan 21 2014
%C a(43) >= 2558. Determining this term requires factoring the Lucas number L_1279. - _Charles R Greathouse IV_, Jan 21 2014
%C 3002 <= a(44) <= 3302. 3302, 3698, 4898 are terms. - _Chai Wah Wu_, Jul 23 2020
%H Christian Ballot and Florian Luca, <a href="http://dx.doi.org/10.4064/aa127-2-4">On the equation x^2+dy^2=Fn</a>, Acta Arith. 127 (2007), 145-155.
%H Kevin O'Bryant, <a href="http://mathoverflow.net/questions/67601">Which Fibonacci numbers are the sum of two squares?</a>, MathOverflow.
%F a(n) = 2*A124132(n-1).
%e Fibonacci(14) = 377 = 19^2 + 4^2, so 14 is in the sequence.
%t Reap[For[n = 0, n <= 400, n = n+2, If[Reduce[Fibonacci[n] == x^2 + y^2, {x, y}, Integers] =!= False, Print[n]; Sow[n]]]][[2, 1]]
%o (PARI) is(n)=if(n%2, return(0)); my(f=factor(fibonacci(n))); for(i=1,#f~, if(f[i,1]%4==3 && f[i,2]%2, return(0))); 1 \\ _Charles R Greathouse IV_, Jan 21 2014
%o (PARI) default(factor_add_primes, 1);
%o is(n)={
%o if(n%2,return(0));
%o my(f=fibonacci(n),t);
%o if(f%4==3,return(0));
%o forprime(p=2,min(log(f)^2,1e5),
%o if(f%p==0,
%o t=valuation(f,p);
%o if(p%4==3&&t%2,return(0));
%o f/=p^t;
%o if(f%4==3,return(0))
%o )
%o );
%o fordiv(n,d,
%o if(d==n, break);
%o t=factor(fibonacci(d))[,1];
%o for(i=1,#t,
%o if(t[i]%4==3 && valuation(f,t[i])%2, return(0));
%o f/=t[i]^valuation(f,t[i]);
%o if(f%4==3,return(0))
%o )
%o );
%o f=factor(f);
%o for(i=1,#f[,1],
%o if(f[i,2]%2&&f[i,1]%4==3,return(0))
%o );
%o 1
%o }; \\ _Charles R Greathouse IV_, Jan 21 2014
%o (Python)
%o from itertools import count, islice
%o from sympy import factorint, fibonacci
%o def A236264_gen(): # generator of terms
%o return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(fibonacci(n)).items()),count(0,2))
%o a236264_list = list(islice(A236264_gen(),10)) # _Chai Wah Wu_, Jun 27 2022
%Y Cf. A000045, A001481, A124132.
%K nonn,more
%O 1,2
%A _Jean-François Alcover_, Jan 21 2014
%E a(32)-a(42) from _Charles R Greathouse IV_, Jan 21 2014
%E a(43) from _Chai Wah Wu_, Jul 23 2020