login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098655
Trace sequence of 3 X 3 symmetric Krawtchouk matrix.
2
3, 2, 20, 8, 144, 32, 1088, 128, 8448, 512, 66560, 2048, 528384, 8192, 4210688, 32768, 33619968, 131072, 268697600, 524288, 2148532224, 2097152, 17184063488, 8388608, 137455730688, 33554432, 1099578736640, 134217728, 8796361457664
OFFSET
0,1
COMMENTS
Let A=[1,2,1;2,0,-2;1,-2,1] the 3 X 3 symmetric Krawtchouk matrix. Then a(n) = trace(A^n).
LINKS
P. Feinsilver and J. Kocik, Krawtchouk Polynomials and Krawtchouk Matrices, Contemporary Mathematics, 287 2001, pp. 83-96.
Philip Feinsilver, Jerzy Kocik, Krawtchouk matrices from classical and quantum random walks, arXiv:quant-ph/0702173, 2007.
FORMULA
G.f.: (3 - 4*x - 8*x^2)/((1-2*x)*(1-8*x^2)).
a(n) = 2^n + (2*sqrt(2))^n + (-2*sqrt(2))^n.
a(n) = 2*a(n-1) + 8*a(n-2) - 16*a(n-3).
E.g.f.: exp(2*x) + 2*cosh(2*sqrt(2)*x). - Stefano Spezia, Sep 08 2019
CROSSREFS
Sequence in context: A154262 A367548 A154261 * A065038 A123225 A009028
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 19 2004
STATUS
approved