OFFSET
0,1
COMMENTS
Let A=[1,2,1;2,0,-2;1,-2,1] the 3 X 3 symmetric Krawtchouk matrix. Then a(n) = trace(A^n).
LINKS
P. Feinsilver and J. Kocik, Krawtchouk Polynomials and Krawtchouk Matrices, Contemporary Mathematics, 287 2001, pp. 83-96.
Philip Feinsilver, Jerzy Kocik, Krawtchouk matrices from classical and quantum random walks, arXiv:quant-ph/0702173, 2007.
Index entries for linear recurrences with constant coefficients, signature (2,8,-16).
FORMULA
G.f.: (3 - 4*x - 8*x^2)/((1-2*x)*(1-8*x^2)).
a(n) = 2^n + (2*sqrt(2))^n + (-2*sqrt(2))^n.
a(n) = 2*a(n-1) + 8*a(n-2) - 16*a(n-3).
E.g.f.: exp(2*x) + 2*cosh(2*sqrt(2)*x). - Stefano Spezia, Sep 08 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 19 2004
STATUS
approved