login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Trace sequence of 3 X 3 symmetric Krawtchouk matrix.
2

%I #18 Sep 08 2019 12:09:06

%S 3,2,20,8,144,32,1088,128,8448,512,66560,2048,528384,8192,4210688,

%T 32768,33619968,131072,268697600,524288,2148532224,2097152,

%U 17184063488,8388608,137455730688,33554432,1099578736640,134217728,8796361457664

%N Trace sequence of 3 X 3 symmetric Krawtchouk matrix.

%C Let A=[1,2,1;2,0,-2;1,-2,1] the 3 X 3 symmetric Krawtchouk matrix. Then a(n) = trace(A^n).

%H P. Feinsilver and J. Kocik, <a href="http://dx.doi.org/10.1007/0-387-23394-6_5">Krawtchouk Polynomials and Krawtchouk Matrices</a>, Contemporary Mathematics, 287 2001, pp. 83-96.

%H Philip Feinsilver, Jerzy Kocik, <a href="https://arxiv.org/abs/quant-ph/0702173">Krawtchouk matrices from classical and quantum random walks</a>, arXiv:quant-ph/0702173, 2007.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,8,-16).

%F G.f.: (3 - 4*x - 8*x^2)/((1-2*x)*(1-8*x^2)).

%F a(n) = 2^n + (2*sqrt(2))^n + (-2*sqrt(2))^n.

%F a(n) = 2*a(n-1) + 8*a(n-2) - 16*a(n-3).

%F E.g.f.: exp(2*x) + 2*cosh(2*sqrt(2)*x). - _Stefano Spezia_, Sep 08 2019

%Y Cf. A098656, A098657.

%K easy,nonn

%O 0,1

%A _Paul Barry_, Sep 19 2004