login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123225
Triangle read by rows: T(n,d) = (n!/d!)*(n+1)*binomial(2n-d+1,n+1)/(n-d+1) (0 <= d <= n).
1
1, 3, 2, 20, 12, 3, 210, 120, 30, 4, 3024, 1680, 420, 60, 5, 55440, 30240, 7560, 1120, 105, 6, 1235520, 665280, 166320, 25200, 2520, 168, 7, 32432400, 17297280, 4324320, 665280, 69300, 5040, 252, 8, 980179200, 518918400, 129729600, 20180160, 2162160
OFFSET
0,2
LINKS
E. Babson and E. Steingrimsson, Generalized permutation patterns and a classification of the Mahonian statistics, Séminaire Lotharingien de Combinatoire, Paper B44b, 2000 (see p. 8).
FORMULA
T(n,d) = (n!/d!)*Sum_{k=0..n} binomial(n-d+k,k) (0 <= d <= n).
T(n,d) = (n!/d!)*(n+1)*binomial(2n-d+1,n+1)/(n-d+1) (0 <= d <= n).
EXAMPLE
Triangle begins:
1;
3, 2;
20, 12, 3;
210, 120, 30, 4;
3024, 1680, 420, 60, 5;
MAPLE
T:=proc(n, d) if d<=n then n!*(n+1)*binomial(2*n-d+1, n+1)/d!/(n-d+1) else 0 fi end: for n from 0 to 9 do seq(T(n, d), d=0..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, d_, k_] = (n!/d!)*Binomial[n - d + k, k]; a = Table[Table[Sum[T[n, d, k], {k, 0, n}], {d, 0, n}], {n, 0, 10}]; Flatten[a]
PROG
(PARI) for(n=0, 12, for(k=0, n, print1((n!/k!)*(n+1)*binomial(2*n-k+1, n+1)/(n-k+1), ", "))) \\ G. C. Greubel, Oct 12 2018
(Magma) [[(Factorial(n)/Factorial(k))*(n+1)*Binomial(2*n-k+1, n+1)/(n - k +1): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Oct 12 2018
(GAP) Flat(List([0..8], n->List([0..n], d->(Factorial(n)/Factorial(d))*(n+1)*Binomial(2*n-d+1, n+1)/(n-d+1)))); # Muniru A Asiru, Oct 12 2018
CROSSREFS
Cf. A008302.
Sequence in context: A154261 A098655 A065038 * A009028 A009022 A009033
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Oct 05 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 08 2006
STATUS
approved