The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009022 Expansion of e.g.f. cos(log(1+tanh(x))). 1
 1, 0, -1, 3, -2, -20, 74, 98, -1532, 960, 41324, -105732, -1595912, 7998640, 85401224, -705417112, -6026865392, 76352075520, 537223559024, -10130428275792, -58185728893472, 1628892022801600, 7352490891960224, -313251680404802272 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Related to A102573: letting T(q,r) be the coefficient of n^(r+1) in the polynomial 2^(q-n)/n times Sum_{k=0..n} binomial(n,k)*k^q, then A009022(x) equals (-1)^(x+1) times the imaginary part of Sum_{k=0..x-1} T(x,k)*i^k, where i is the imaginary unit. See Mathematica code below. - John M. Campbell, Nov 17 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = Sum_{m=0..n/2} (-1)^(m)*Sum_{r=2*m..n} (Stirling1(r,2*m)* Sum_{k=r..n} binomial(k-1,r-1)*k!*2^(n-k)*Stirling2(n,k)*(-1)^(r+k))/r!), n > 0, a(0)=1. - Vladimir Kruchinin, Jun 21 2011 MATHEMATICA Join[{1}, Cos[Log[1 + Tanh[x]]]; poly[q_] := 2^(q - n)/n FunctionExpand[Sum[Binomial[n, k] k^q, {k, 0, n}]]; T[q_, r_] := First[Take[CoefficientList[poly[q], n], {r + 1, r + 1}]]; Table[Im[Sum[T[x, k] I^k, {k, 0, x - 1}]] (-1)^(x + 1), {x, 1, 23}]] (* John M. Campbell, Nov 17 2011 *) With[{nn = 30}, Take[CoefficientList[Series[Cos[Log[1 + Tanh[x]]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 1}]] (* Vincenzo Librandi, Feb 09 2014 *) PROG (Maxima) a(n):=if n=0 then 1 else sum((-1)^(m)*sum((stirling1(r, 2*m)*sum(binomial(k-1, r-1)*k!*2^(n-k)*stirling2(n, k)*(-1)^(r+k), k, r, n))/r!, r, 2*m, n), m, 0, n/2); /* Vladimir Kruchinin, Jun 21 2011 */ (PARI) x='x+O('x^30); Vec(serlaplace(cos(log(1+tanh(x))))) \\ G. C. Greubel, Jul 22 2018 (MAGMA) m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cos(Log(1+Tanh(x))))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 22 2018 CROSSREFS Sequence in context: A065038 A123225 A009028 * A009033 A298661 A323780 Adjacent sequences:  A009019 A009020 A009021 * A009023 A009024 A009025 KEYWORD sign,easy AUTHOR EXTENSIONS Extended with signs by Olivier Gérard Mar 15 1997 Adapted Campbell's Mathematica program for offset by Vincenzo Librandi, Feb 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 14:20 EDT 2021. Contains 344956 sequences. (Running on oeis4.)