login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098656
Expansion of x(1-4x)/((1-2x)(1-8x^2)).
2
0, 1, -2, 4, -24, 16, -224, 64, -1920, 256, -15872, 1024, -129024, 4096, -1040384, 16384, -8355840, 65536, -66977792, 262144, -536346624, 1048576, -4292870144, 4194304, -34351349760, 16777216, -274844352512, 67108864, -2198889037824, 268435456, -17591649173504, 1073741824
OFFSET
0,3
COMMENTS
Let A=[1,2,1;2,0,-2;1,-2,1] the 3 X 3 symmetric Krawtchouk matrix. Than a(n) is the 1,3 element of A^n.
REFERENCES
P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum walks, Contemporary Mathematics, 287 2001, pp. 83-96.
FORMULA
a(n)=2^(n-1)-2^(3(n-1)/2)(1+(-1)^n)/sqrt(2); a(n)=2a(n-1)+8a(n-2)-16a(n-3).
a(n) = (-2)^(n-1)*A094024(n-1). - R. J. Mathar, Mar 08 2021
MATHEMATICA
CoefficientList[Series[x (1-4x)/((1-2x)(1-8x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 8, -16}, {0, 1, -2}, 40] (* Harvey P. Dale, Jun 30 2011 *)
CROSSREFS
Sequence in context: A147761 A214299 A090591 * A138611 A171459 A240558
KEYWORD
easy,sign
AUTHOR
Paul Barry, Sep 19 2004
STATUS
approved