login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098656 Expansion of x(1-4x)/((1-2x)(1-8x^2)). 2
0, 1, -2, 4, -24, 16, -224, 64, -1920, 256, -15872, 1024, -129024, 4096, -1040384, 16384, -8355840, 65536, -66977792, 262144, -536346624, 1048576, -4292870144, 4194304, -34351349760, 16777216, -274844352512, 67108864, -2198889037824, 268435456, -17591649173504, 1073741824 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Let A=[1,2,1;2,0,-2;1,-2,1] the 3 X 3 symmetric Krawtchouk matrix. Than a(n) is the 1,3 element of A^n.

REFERENCES

P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum walks, Contemporary Mathematics, 287 2001, pp. 83-96.

LINKS

Table of n, a(n) for n=0..31.

Index entries for linear recurrences with constant coefficients, signature (2,8,-16).

FORMULA

a(n)=2^(n-1)-2^(3(n-1)/2)(1+(-1)^n)/sqrt(2); a(n)=2a(n-1)+8a(n-2)-16a(n-3).

a(n) = (-2)^(n-1)*A094024(n-1). - R. J. Mathar, Mar 08 2021

MATHEMATICA

CoefficientList[Series[x (1-4x)/((1-2x)(1-8x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 8, -16}, {0, 1, -2}, 40] (* Harvey P. Dale, Jun 30 2011 *)

CROSSREFS

Cf. A098655, A098657.

Sequence in context: A147761 A214299 A090591 * A138611 A171459 A240558

Adjacent sequences:  A098653 A098654 A098655 * A098657 A098658 A098659

KEYWORD

easy,sign

AUTHOR

Paul Barry, Sep 19 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 19:38 EDT 2021. Contains 343902 sequences. (Running on oeis4.)