login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090591
Expansion of g.f.: 1/(1 - 2*x + 8*x^2).
5
1, 2, -4, -24, -16, 160, 448, -384, -4352, -5632, 23552, 92160, -4096, -745472, -1458176, 3047424, 17760256, 11141120, -119799808, -328728576, 300941312, 3231711232, 4055891968, -17741905920, -67930947584
OFFSET
0,2
COMMENTS
(1,2) entry of powers of the orthogonal design shown below:
+1 +1 +1 +1 +1 +1 +1 +1
-1 +1 +1 -1 +1 -1 -1 +1
-1 -1 +1 +1 +1 +1 -1 -1
-1 +1 -1 +1 +1 -1 +1 -1
-1 -1 -1 -1 +1 +1 +1 +1
-1 +1 -1 +1 -1 +1 -1 +1
-1 +1 +1 -1 -1 +1 +1 -1
-1 -1 +1 +1 -1 -1 +1 +1
Pisano period lengths: 1, 1, 8, 1, 24, 8, 7, 1, 24, 24, 10, 8, 56, 7, 24, 1, 144, 24, 120, 24, ... - R. J. Mathar, Aug 10 2012
FORMULA
Binomial transform of (1+x)/(1+7*x^2).
a(0)=1, a(1)=2, a(n) = 2*a(n-1) - 8*a(n-2) for n>1. - Philippe Deléham, Sep 19 2009
MAPLE
seq(coeff(series(1/(1-2*x+8*x^2), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 23 2018
MATHEMATICA
LinearRecurrence[{2, -8}, {1, 2}, 30] (* G. C. Greubel, Oct 22 2018 *)
CoefficientList[Series[1/(1-2x+8x^2), {x, 0, 60}], x] (* Harvey P. Dale, Jan 17 2021 *)
PROG
(Sage) [lucas_number1(n, 2, 8) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
(PARI) x='x+O('x^30); Vec(1/(1 - 2*x + 8*x^2)) \\ G. C. Greubel, Oct 22 2018
(Magma) [n le 2 select n else 2*Self(n-1) - 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 22 2018
(GAP) a:=[1, 2];; for n in [3..30] do a[n]:=2*a[n-1]-8*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
CROSSREFS
Sequence in context: A269573 A147761 A214299 * A098656 A138611 A171459
KEYWORD
sign
AUTHOR
Simone Severini, Dec 04 2003
EXTENSIONS
Formulae from Paul Barry, Dec 05 2003
Corrected by T. D. Noe, Dec 11 2006
STATUS
approved