Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2022 08:45:12
%S 1,2,-4,-24,-16,160,448,-384,-4352,-5632,23552,92160,-4096,-745472,
%T -1458176,3047424,17760256,11141120,-119799808,-328728576,300941312,
%U 3231711232,4055891968,-17741905920,-67930947584
%N Expansion of g.f.: 1/(1 - 2*x + 8*x^2).
%C (1,2) entry of powers of the orthogonal design shown below:
%C +1 +1 +1 +1 +1 +1 +1 +1
%C -1 +1 +1 -1 +1 -1 -1 +1
%C -1 -1 +1 +1 +1 +1 -1 -1
%C -1 +1 -1 +1 +1 -1 +1 -1
%C -1 -1 -1 -1 +1 +1 +1 +1
%C -1 +1 -1 +1 -1 +1 -1 +1
%C -1 +1 +1 -1 -1 +1 +1 -1
%C -1 -1 +1 +1 -1 -1 +1 +1
%C Pisano period lengths: 1, 1, 8, 1, 24, 8, 7, 1, 24, 24, 10, 8, 56, 7, 24, 1, 144, 24, 120, 24, ... - _R. J. Mathar_, Aug 10 2012
%H G. C. Greubel, <a href="/A090591/b090591.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-8).
%F Binomial transform of (1+x)/(1+7*x^2).
%F a(0)=1, a(1)=2, a(n) = 2*a(n-1) - 8*a(n-2) for n>1. - _Philippe Deléham_, Sep 19 2009
%p seq(coeff(series(1/(1-2*x+8*x^2),x,n+1), x, n), n = 0 .. 25); # _Muniru A Asiru_, Oct 23 2018
%t LinearRecurrence[{2,-8}, {1,2}, 30] (* _G. C. Greubel_, Oct 22 2018 *)
%t CoefficientList[Series[1/(1-2x+8x^2),{x,0,60}],x] (* _Harvey P. Dale_, Jan 17 2021 *)
%o (Sage) [lucas_number1(n,2,8) for n in range(1, 21)] # _Zerinvary Lajos_, Apr 23 2009
%o (PARI) x='x+O('x^30); Vec(1/(1 - 2*x + 8*x^2)) \\ _G. C. Greubel_, Oct 22 2018
%o (Magma) [n le 2 select n else 2*Self(n-1) - 8*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Oct 22 2018
%o (GAP) a:=[1,2];; for n in [3..30] do a[n]:=2*a[n-1]-8*a[n-2]; od; a; # _Muniru A Asiru_, Oct 23 2018
%Y Cf. A087621, A090590.
%K sign
%O 0,2
%A _Simone Severini_, Dec 04 2003
%E Formulae from _Paul Barry_, Dec 05 2003
%E Corrected by _T. D. Noe_, Dec 11 2006