login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240558
a(n) = 2^n*n!/((floor(n/2)+1)*floor(n/2)!^2).
2
1, 2, 4, 24, 32, 320, 320, 4480, 3584, 64512, 43008, 946176, 540672, 14057472, 7028736, 210862080, 93716480, 3186360320, 1274544128, 48432676864, 17611882496, 739699064832, 246566354944, 11342052327424, 3489862254592, 174493112729600, 49855175065600
OFFSET
0,2
LINKS
FORMULA
O.g.f.: ((i*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2), where i=sqrt(-1).
For a recurrence see the Sage program.
a(n) = 2^n*A057977(n)
a(2*k) = A151403(k) = 2^k*A151374(k) = 4^k*A000108(k).
a(2*k+1) = A099045(k+1) = 2^k*A069723(k+2) = 4^k*A000984(k+1).
From Peter Luschny, Jan 31 2015: (Start)
a(n) = Sum_{k=0..n} A056040(n)*C(n,k)/(floor(n/2)+1).
a(n) = Sum_{k=0..n} n!*C(n,k)/((floor(n/2)+1)*(floor(n/2)!)^2).
a(n) = 2^n*n!*[x^n]((x+1)*hypergeom([],[2],x^2)).
a(n) ~ 2^(n+N)/((n+1)^<n>*sqrt(Pi*(2*N+1))); here <n> = 1 if n is even, 0 otherwise and N = n+<n>+1. (End)
Conjecture: -(n+2)*(n^2-5)*a(n) +8*(-2*n-1)*a(n-1) +16*(n-1)*(n^2+2*n-4)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
MAPLE
A240558 := n -> 2^n*n!/((iquo(n, 2)+1)*iquo(n, 2)!^2):
seq(A240558(n), n=0..30);
MATHEMATICA
Table[SeriesCoefficient[((I*(2*x*(8*x+1)-1))/Sqrt[16*x^2-1]-2*x+1) /(8*x^2), {x, 0, n}], {n, 0, 22}]
PROG
(Sage)
def A240558():
x, n = 1, 1
while True:
yield x
m = 2*n if is_odd(n) else 8/(n+2)
x *= m
n += 1
a = A240558(); [next(a) for i in range(36)]
(PARI) x='x+O('x^50); Vec(round((I*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2)) \\ G. C. Greubel, Apr 05 2017
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Apr 14 2014
STATUS
approved