OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
O.g.f.: ((i*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2), where i=sqrt(-1).
For a recurrence see the Sage program.
a(n) = 2^n*A057977(n)
From Peter Luschny, Jan 31 2015: (Start)
a(n) = Sum_{k=0..n} A056040(n)*C(n,k)/(floor(n/2)+1).
a(n) = Sum_{k=0..n} n!*C(n,k)/((floor(n/2)+1)*(floor(n/2)!)^2).
a(n) = 2^n*n!*[x^n]((x+1)*hypergeom([],[2],x^2)).
a(n) ~ 2^(n+N)/((n+1)^<n>*sqrt(Pi*(2*N+1))); here <n> = 1 if n is even, 0 otherwise and N = n+<n>+1. (End)
Conjecture: -(n+2)*(n^2-5)*a(n) +8*(-2*n-1)*a(n-1) +16*(n-1)*(n^2+2*n-4)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
MATHEMATICA
Table[SeriesCoefficient[((I*(2*x*(8*x+1)-1))/Sqrt[16*x^2-1]-2*x+1) /(8*x^2), {x, 0, n}], {n, 0, 22}]
PROG
(Sage)
def A240558():
x, n = 1, 1
while True:
yield x
m = 2*n if is_odd(n) else 8/(n+2)
x *= m
n += 1
a = A240558(); [next(a) for i in range(36)]
(PARI) x='x+O('x^50); Vec(round((I*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2)) \\ G. C. Greubel, Apr 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Apr 14 2014
STATUS
approved