OFFSET
0,4
LINKS
L. Seidel, Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, Vol. 7 (1877), 157-187.
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k)*2^k*binomial(n,k)*(E(k,1/2) + 2*E(k+1,0)) where E(n,x) are the Euler polynomials.
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*(skp(k,0) + skp(k+1,-1)), where skp(n, x) are the Swiss-Knife polynomials A153641.
E.g.f.: 1 - sech(x) - tanh(x) + sinh(x)*sech(x)^2 = ((exp(-x)-1)*sech(x))^2 / 2. - Sergei N. Gladkovskii, Nov 20 2014
E.g.f.: (1 - sech(x)) * (1 - tanh(x)). - Michael Somos, Nov 22 2014
EXAMPLE
G.f. = x^2 - 3*x^3 - 5*x^4 + 45*x^5 + 61*x^6 - 1113*x^7 - 1385*x^8 + ...
MAPLE
MATHEMATICA
skp[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; skp[n_, x0_?NumericQ] := skp[n, x] /. x -> x0; a[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*(skp[k, 0] + skp[k+1, -1]), {k, 0, n}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 09 2014, after Peter Luschny *)
PROG
(Sage)
# Efficient computation with L. Seidel's boustrophedon transformation.
def A240559_list(n) :
A = [0]*(n+1); A[0] = 1; R = [0]
k = 0; e = 1; x = -1; s = -1
for i in (0..n):
Am = 0; A[k + e] = 0; e = -e;
for j in (0..i): Am += A[k]; A[k] = Am; k += e
if e == 1: x += 1; s = -s
v = -A[-x] if e == 1 else A[-x] - A[x]
if i > 1: R.append(s*v)
return R
A240559_list(24)
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Apr 17 2014
STATUS
approved