login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241242 a(n) = -2^(2*n+1)*(E(2*n+1, 1/2) + E(2*n+1, 1) + 2*(E(2*n+2, 1/2) + E(2*n+2, 1))), where E(n,x) are the Euler polynomials. 3
0, -3, 45, -1113, 42585, -2348973, 176992725, -17487754833, 2195014332465, -341282303124693, 64397376340013805, -14499110277050234553, 3840151029102915908745, -1182008039799685905580413, 418424709061213506712209285, -168805428822414120140493978273 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..15.

FORMULA

a(n) = A240559(2*n+1) = (-1)^n*A147315(2*n+1,2) = (-1)^n*A186370(2*n,2*n-1).

a(n) = Sum_{k=0..2*n+1} (-1)^(2*n+1-k)*binomial(2*n+1, k)*2^k*(E(k, 1/2) + 2*E(k+1, 0)) where E(n,x) are the Euler polynomials.

a(n) = Sum_{k=0..2*n+1} (-1)^(2*n+1-k)*binomial(2*n+1, k)*(skp(k, 0) + skp(k+1, -1)), where skp(n, x) are the Swiss-Knife polynomials A153641.

a(n) = Bernoulli(2*n + 2) * 4^(n+1) * (1 - 4^(n+1)) / (2*n + 2) - EulerE(2*n + 2), where EulerE(2*n) is A028296. - Daniel Suteu, May 22 2018

a(n) = (-1)^(n+1) * (A000182(n+1) - A000364(n+1)). - Daniel Suteu, Jun 23 2018

MAPLE

A241242 := proc(n) e := n -> euler(n, 1/2) + euler(n, 1); -2^(2*n+1)*(e(2*n+1) + 2*e(2*n+2)) end: seq(A241242(n), n=0..15);

MATHEMATICA

Array[-2^(2 # + 1)*(EulerE[2 # + 1, 1/2] + EulerE[2 # + 1, 1] + 2 (EulerE[2 # + 2, 1/2] + EulerE[2 # + 2, 1])) &, 16, 0] (* Michael De Vlieger, May 24 2018 *)

CROSSREFS

Cf. A000182, A000364, A028296, A240559, A147315, A186370.

Sequence in context: A012827 A012769 A302106 * A009088 A245066 A187662

Adjacent sequences:  A241239 A241240 A241241 * A241243 A241244 A241245

KEYWORD

sign

AUTHOR

Peter Luschny, Apr 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 02:01 EDT 2020. Contains 334581 sequences. (Running on oeis4.)