

A241244


Primes obtained by merging 4 successive digits in decimal expansion of sqrt(5).


1



6067, 7499, 8969, 4091, 9173, 8731, 5209, 9941, 2749, 4969, 5081, 5077, 773, 4253, 2677, 4447, 3863, 2153, 7817, 3191, 9187, 1879, 6581, 8053, 1753, 5003, 2339, 9241, 3253, 2539, 2887, 6299, 8161, 7759, 2371, 3907, 7297, 8641, 2689, 4099, 991, 3169, 1693, 7019
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Some terms in the sequence have fewer than 4 digits because leading zeros are permitted.


LINKS

K. D. Bajpai, Table of n, a(n) for n = 1..2940


EXAMPLE

a(1) = 6067 which is prime. It is the first occurrence of 4 successive digit prime in decimal expansion of sqrt(5), i.e., 2.23(6067)9774997896964091736687312762354...


MATHEMATICA

t=Sqrt[5]; With[{k=FromDigits/@Partition[RealDigits[t, 10, 25000][[1]], 4, 1]}, Select[k, PrimeQ]]


CROSSREFS

Cf. A198161, A198162, A198163, A198164, A198169, A241149.
Sequence in context: A209552 A238042 A251818 * A241245 A260105 A084804
Adjacent sequences: A241241 A241242 A241243 * A241245 A241246 A241247


KEYWORD

nonn,base


AUTHOR

K. D. Bajpai, Apr 18 2014


STATUS

approved



