login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245066
Central terms of triangles A001497 and A001498.
4
1, 3, 45, 1260, 51975, 2837835, 192972780, 15713497800, 1490818103775, 161505294575625, 19671344879311125, 2660996470946814000, 395823225053338582500, 64214706279807005422500, 11283441246308945238525000, 2134827083801652439128930000
OFFSET
0,2
LINKS
FORMULA
a(n) = A001497(2*n,n) = A001498(2*n,n).
O.g.f. A(x) satisfies 0 = 6*A(x) + (-2 + 54*x) * A'(x) + 27*x^2 * A''(x). - Michael Somos, Jul 11 2014
E.g.f. A(x) satisfies 0 = 6*A(x) + (-2 + 54*x) * A'(x) + (-2*x + 27*x^2) * A''(x). - Michael Somos, Jul 11 2014
a(n) = (3*n)! / (2^n * n!^2). - Michael Somos, Jul 11 2014
a(n) = (2*n-1)!! * [x^(2*n)] x^n/(1 - x)^(2*n+1). - Ilya Gutkovskiy, Nov 24 2017
EXAMPLE
G.f. = 1 + 3*x + 45*x^2 + 1260*x^3 + 51975*x^4 + 2837835*x^5 + ...
PROG
(Haskell)
a245066 n = a001497 (2 * n) n
(PARI) {a(n) = if( n<0, 0, (3*n)! / (2^n * n!^2))}; /* Michael Somos, Jul 11 2014 */
CROSSREFS
Sequence in context: A361046 A241242 A009088 * A352409 A187662 A113065
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 11 2014
STATUS
approved