login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239005 Signed version of the Seidel triangle for the Euler numbers, read by rows. 5
1, 0, 1, -1, -1, 0, 0, -1, -2, -2, 5, 5, 4, 2, 0, 0, 5, 10, 14, 16, 16, -61, -61, -56, -46, -32, -16, 0, 0, -61, -122, -178, -224, -256, -272, -272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Table of n, a(n) for n=0..54.

L. Seidel, Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, Vol. 7 (1877), pp. 157-187; see Beilage 4 (p. 187).

FORMULA

a(n) = A057077(n)*A008280(n) by rows.

a(n) is the increasing antidiagonals of the difference table of A155585(n).

Central column of triangle: A099023(n).

Right main diagonal of triangle: A155585(n) (see A009006(n)).

Left main diagonal of triangle: A122045(n).

T(n,m) = Sum_{k=0..n} binomial(m,k)*Euler(n-m+k) for 0 <= m <= n. - Vladimir Kruchinin, Apr 06 2015 [The summation only needs to go from k=0 to k=m because of binomial(m,k).]

T(n,k) = (-1)^n*A236935(n-k,k) for 0 <= k <= n, where the latter is read as a square array. - Petros Hadjicostas, Feb 21 2021

EXAMPLE

The triangle T(n,k) begins:

                      1

                    0   1

                 -1  -1   0

                0  -1  -2  -2

              5   5   4   2   0

             ...

The array read as a table, A(n,k) = T(n+k, k), starts:

     1,    1,    0,   -2,    0,   16,    0, -272,    0, ...

     0,   -1,   -2,    2,   16,  -16, -272,  272, ...

    -1,   -1,    4,   14,  -32, -256,  544, ...

     0,    5,   10,  -46, -224,  800, ...

     5,    5,  -56, -178, 1024, ...

     0,  -61, -122, 1202, ...

   -61,  -61, 1324, ...

     0, 1385, ...

  1385, ...

  ...

For the above table, we have A(n,k) = (-1)^(n+k)*A236935(n,k) for n, k >= 0. It has joint e.g.f. 2*exp(-x)/(1 + exp(-2*(x+y))). - Petros Hadjicostas, Feb 21 2021

MATHEMATICA

t[0, 0] = 1; t[n_, m_] /; n<m || m<0 = 0; t[n_, m_] := t[n, m] = Sum[t[n-1, n-k], {k, m}]; Table[r = (-1)^Floor[n/2]*Table[t[n, m], {m, 0, n}]; If[EvenQ[n], Reverse[r], r], {n, 0, 9}] // Flatten (* Jean-François Alcover, Dec 30 2014 *)

PROG

(Maxima)

T(n, m):=sum(binomial(m, k)*euler(n-m+k), k, 0, m); /* Vladimir Kruchinin, Apr 06 2015 */

(PARI) a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */

T(n, k) = (-1)^n*sum(i=0, k, (-1)^i*binomial(k, i)*a(n-i)) /* Petros Hadjicostas, Feb 21 2021 */

/* Second PARI program (same a(n) for A122045 as above) */

T(n, k) = sum(i=0, k, binomial(k, i)*a(n-k+i)) /* Petros Hadjicostas, Feb 21 2021 */

CROSSREFS

Unsigned version is A008280.

Cf. A008281, A099023, A108040, A122045, A155585, A236935.

Sequence in context: A210802 A257943 A008280 * A236935 A213187 A317921

Adjacent sequences:  A239002 A239003 A239004 * A239006 A239007 A239008

KEYWORD

sign,tabl

AUTHOR

Paul Curtz, Mar 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 07:10 EDT 2021. Contains 345018 sequences. (Running on oeis4.)