login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239004
Number of partitions of n having twice as many even parts as odd.
2
1, 0, 0, 0, 0, 1, 0, 2, 0, 4, 1, 6, 2, 9, 5, 13, 9, 18, 17, 25, 28, 35, 46, 49, 70, 70, 107, 101, 156, 145, 227, 210, 321, 303, 453, 436, 628, 622, 868, 884, 1187, 1243, 1619, 1738, 2192, 2410, 2960, 3317, 3977, 4532, 5331, 6154, 7117, 8298, 9477, 11129
OFFSET
0,8
LINKS
EXAMPLE
a(11) counts these 6 partitions: 821, 722, 641, 632, 542, 443.
MAPLE
b:= proc(n, i, t) option remember;
`if`(n=0, `if`(t=0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+`if`(irem(i, 2)=1, 2, -1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 14 2014
MATHEMATICA
p[n_] := p[n] = Select[IntegerPartitions[n], 2*Count[#, _?OddQ] == Count[#, _?EvenQ] &]; Table[p[n], {n, 0, 16}] (* shows partitions *)
TableForm[t] (* partitions, vertical format *)
Table[Length[p[n]], {n, 0, 60}] (* A239004 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t==0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t + If[Mod[i, 2] == 1, 2, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A239258.
Sequence in context: A289144 A350576 A008797 * A168036 A371499 A217930
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 13 2014
STATUS
approved