login
A239258
Number of partitions of 2n having twice as many odd parts as even.
2
1, 0, 1, 2, 5, 8, 15, 23, 39, 59, 94, 140, 216, 316, 472, 682, 994, 1414, 2022, 2837, 3989, 5530, 7663, 10504, 14381, 19509, 26417, 35510, 47618, 63461, 84365, 111553, 147126, 193144, 252892, 329773, 428931, 555852, 718547, 925795, 1189946, 1524863, 1949540
OFFSET
0,4
EXAMPLE
a(5) counts these 8 partitions of 10: 811, 721, 631, 541, 532, 433, 421111, 322111.
MATHEMATICA
p[n_] := p[n] = Select[IntegerPartitions[2 n], Count[#, _?OddQ] == 2*Count[#, _?EvenQ] &]; t = Table[p[n], {n, 0, 8}] (* shows the partitions *); TableForm[t] (* partitions, vertical format *)
t1 = Table[Length[p[n]], {n, 0, 60}] (* A239258 *)
(* Peter J. C. Moses, Mar 10 2014 *)
CROSSREFS
Cf. A239004.
Sequence in context: A349796 A058884 A073335 * A362864 A309551 A309625
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 13 2014
EXTENSIONS
More terms from Alois P. Heinz, Mar 15 2014
STATUS
approved