login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239260
Number of partitions of n having (sum of odd parts) <= (sum of even parts).
5
1, 0, 1, 1, 3, 2, 5, 7, 12, 11, 18, 26, 40, 40, 60, 83, 117, 120, 168, 230, 312, 331, 446, 592, 784, 821, 1083, 1407, 1826, 1940, 2511, 3220, 4097, 4347, 5520, 6976, 8779, 9338, 11732, 14627, 18196, 19314, 23999, 29654, 36503, 38907, 47835, 58555, 71484, 75942
OFFSET
0,5
LINKS
FORMULA
a(n) + A239262(n) = A000041(n).
EXAMPLE
a(8) counts these 12 partitions: 8, 62, 611, 44, 431, 422, 4211, 41111, 3221, 2222, 22211, 221111.
MATHEMATICA
z = 40; p[n_] := p[n] = IntegerPartitions[n]; f[t_] := f[t] = Length[t]
t1 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] < n &]], {n, z}] (* A239259 *)
t2 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] <= n &]], {n, z}] (* A239260 *)
t3 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] == n &]], {n, z}] (* A239261 *)
t4 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] > n &]], {n, z}] (* A239262 *)
t5 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] >= n &]], {n, z}] (* A239263 *)
(* Peter J. C. Moses, Mar 12 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 13 2014
STATUS
approved