

A213187


a(n) = (p+1)/2 if 4  p+1, and p otherwise, where p is the least prime > n with 2(n+1)p prime.


1



2, 2, 5, 5, 4, 4, 6, 6, 13, 6, 13, 13, 17, 17, 10, 17, 10, 10, 12, 12, 16, 12, 29, 16, 29, 16, 37, 29, 16, 16, 41, 37, 37, 41, 41, 37, 24, 41, 22, 41, 22, 22, 24, 24, 61, 24, 53, 61, 53, 30, 61, 53, 61, 34, 30, 61, 73, 30, 61, 61, 36, 34, 34, 36, 36, 34, 42, 36, 73, 36, 73, 73, 89, 40, 40, 42, 42, 40, 89, 42, 97, 42, 89, 97, 89, 101, 97, 89, 97, 52, 101, 97, 109, 101, 52, 97, 54, 101, 52, 101
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: If b(1)>2 is an integer, and b(k+1)=a(b(k)) for k=1,2,3,..., then b(n)=4 for some n>0.
For example, if we start from b(1)=45 then we get the sequence 45, 61, 36, 37, 24, 16, 17, 10, 6, 4, 5, 4, ...


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000
ZhiWei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588.


EXAMPLE

a(8)=6 since 2(8+1)=11+5 with (11+1)/2=6;
a(9)=13 since 2(9+1)=13+7.


MATHEMATICA

Do[Do[If[PrimeQ[2n+2Prime[k]]==True, Print[n, " ", If[Mod[Prime[k], 4]==3, (Prime[k]+1)/2, Prime[k]]]; Goto[aa]], {k, PrimePi[n]+1, PrimePi[2n]}];
Label[aa]; Continue, {n, 1, 100}]
nxt[{n_, a_}]:=Module[{p=NextPrime[n]}, While[!PrimeQ[2(n+1)p], p = NextPrime[ p]]; {n+1, If[Divisible[p+1, 4], (p+1)/2, p]}]; Rest[ Transpose[ NestList[ nxt, {1, 2}, 110]][[2]]] (* Harvey P. Dale, May 30 2016 *)


PROG

(PARI) a(n)=my(q=nextprime(n+1)); while(!isprime(2*n+2q), q=nextprime(q+1)); if(q%4<3, q, (q+1)/2) \\ Charles R Greathouse IV, Feb 28 2013


CROSSREFS

Cf. A002372, A222566, A222532.
Sequence in context: A008280 A239005 A236935 * A317921 A195710 A321304
Adjacent sequences: A213184 A213185 A213186 * A213188 A213189 A213190


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Feb 28 2013


STATUS

approved



