login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n*n!/((floor(n/2)+1)*floor(n/2)!^2).
2

%I #27 Mar 01 2020 07:45:17

%S 1,2,4,24,32,320,320,4480,3584,64512,43008,946176,540672,14057472,

%T 7028736,210862080,93716480,3186360320,1274544128,48432676864,

%U 17611882496,739699064832,246566354944,11342052327424,3489862254592,174493112729600,49855175065600

%N a(n) = 2^n*n!/((floor(n/2)+1)*floor(n/2)!^2).

%H G. C. Greubel, <a href="/A240558/b240558.txt">Table of n, a(n) for n = 0..1000</a>

%F O.g.f.: ((i*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2), where i=sqrt(-1).

%F For a recurrence see the Sage program.

%F a(n) = 2^n*A057977(n)

%F a(2*k) = A151403(k) = 2^k*A151374(k) = 4^k*A000108(k).

%F a(2*k+1) = A099045(k+1) = 2^k*A069723(k+2) = 4^k*A000984(k+1).

%F From _Peter Luschny_, Jan 31 2015: (Start)

%F a(n) = Sum_{k=0..n} A056040(n)*C(n,k)/(floor(n/2)+1).

%F a(n) = Sum_{k=0..n} n!*C(n,k)/((floor(n/2)+1)*(floor(n/2)!)^2).

%F a(n) = 2^n*n!*[x^n]((x+1)*hypergeom([],[2],x^2)).

%F a(n) ~ 2^(n+N)/((n+1)^<n>*sqrt(Pi*(2*N+1))); here <n> = 1 if n is even, 0 otherwise and N = n+<n>+1. (End)

%F Conjecture: -(n+2)*(n^2-5)*a(n) +8*(-2*n-1)*a(n-1) +16*(n-1)*(n^2+2*n-4)*a(n-2)=0. - _R. J. Mathar_, Jun 14 2016

%p A240558 := n -> 2^n*n!/((iquo(n,2)+1)*iquo(n,2)!^2):

%p seq(A240558(n), n=0..30);

%t Table[SeriesCoefficient[((I*(2*x*(8*x+1)-1))/Sqrt[16*x^2-1]-2*x+1) /(8*x^2), {x,0,n}], {n,0,22}]

%o (Sage)

%o def A240558():

%o x, n = 1, 1

%o while True:

%o yield x

%o m = 2*n if is_odd(n) else 8/(n+2)

%o x *= m

%o n += 1

%o a = A240558(); [next(a) for i in range(36)]

%o (PARI) x='x+O('x^50); Vec(round((I*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2)) \\ _G. C. Greubel_, Apr 05 2017

%Y Cf. A000108, A000984, A056040, A057977, A069723, A099045, A151374, A151403.

%K nonn,easy

%O 0,2

%A _Peter Luschny_, Apr 14 2014