login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367548
a(n) = Sum_{k = 0..n} binomial(-n, k) * 2^(n - k).
0
1, 1, 3, -2, 19, -54, 222, -804, 3075, -11630, 44458, -170268, 654766, -2524508, 9758556, -37802952, 146724579, -570450078, 2221230066, -8660901612, 33811886394, -132148736148, 517012584036, -2024632609272, 7935337877454, -31126450260204, 122183595168612
OFFSET
0,3
FORMULA
a(n) = 4^n*3^(-n) - binomial(-n, n+1) * hypergeom([1, 2*n+1], [n + 2], -1/2) / 2.
a(n) = [x^n] (3 + 12*x + sqrt(4*x + 1)*(4*x + 3))/(6 + 16*x - 32*x^2).
D-finite with recurrence 9*n*a(n) +6*(6*n-7)*a(n-1) +16*(-n-4)*a(n-2) +32*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jan 11 2024
MAPLE
seq(add(binomial(-n, k)*2^(n - k), k = 0..n), n = 0..26);
MATHEMATICA
Table[Sum[Binomial[-n, k]2^(n-k), {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Apr 03 2024 *)
CROSSREFS
Cf. A032443.
Sequence in context: A094554 A223881 A154262 * A154261 A098655 A065038
KEYWORD
sign
AUTHOR
Peter Luschny, Nov 29 2023
STATUS
approved