login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367550
a(n) = Product_{i=1..n, j=1..n} (i^4 + i^2*j^2 + j^4).
5
3, 63504, 2260442279270448, 3379470372507391964272022793486336, 2097229364987262298214192667129919538956418868293588090880000
OFFSET
1,1
FORMULA
a(n) = A367542(n) * A367543(n).
a(n) ~ Gamma(1/3)^3 * 3^(3*n*(n+1)/2 + 7/12) * n^(4*n^2 - 1) / (8*Pi^3 * exp(6*n^2 - (6*n*(n+1) + 1)*Pi/(4*sqrt(3)))).
MATHEMATICA
Table[Product[Product[i^4 + i^2*j^2 + j^4, {i, 1, n}], {j, 1, n}], {n, 1, 10}]
PROG
(Python)
from math import prod, factorial
def A367550(n): return (prod((i2:=i**2)*(i2+(j2:=j**2))+j2**2 for i in range(1, n) for j in range(i+1, n+1))*factorial(n)**2)**2*3**n # Chai Wah Wu, Nov 22 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 22 2023
STATUS
approved