login
A367549
Decimal expansion of 1 - DawsonF(1/2).
0
5, 7, 5, 5, 6, 3, 6, 1, 6, 4, 9, 7, 9, 7, 7, 7, 0, 4, 0, 6, 5, 9, 5, 7, 6, 4, 7, 5, 1, 0, 3, 3, 0, 4, 2, 8, 9, 0, 3, 5, 7, 0, 5, 2, 2, 6, 4, 0, 3, 0, 7, 9, 6, 1, 8, 4, 8, 6, 6, 0, 3, 0, 3, 3, 6, 6, 7, 5, 4, 8, 4, 5, 2, 4, 0, 4, 0, 8, 0, 5, 2, 3, 8, 3, 2, 2, 8, 7, 9, 8, 7, 1, 5, 2, 1, 3, 8, 7, 7, 7, 8, 5, 7, 4, 0, 3, 8, 3, 0, 2
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Dawson's Integral.
FORMULA
Equals 1 - sqrt(Pi/4) * erfi(1/2) / exp(1/4) = 1 - A019704 * A367563 / A092042.
Let C denote the constant. Then:
2*C - 1 = Sum_{n>=0} (-1)^n / Pochhammer(n, n).
2*(C - 1) = Sum_{n>=1} (-1)^n*Gamma(n) / Gamma(2*n).
EXAMPLE
0.57556361649797770406595764751033042890357052264030796184866030336675484524040...
MAPLE
1 - sqrt(Pi/4)*erfi(1/2)/exp(1/4): evalf(%, 109);
MATHEMATICA
N[1 - DawsonF[1/2], 110] // RealDigits // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, Nov 23 2023
STATUS
approved