login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154259
G.f. A(x) satisfies: A(x) = x + 2*x*A(x) + 3*x^2*A(A(x)) + 4*x^3*A(A(A(x))) +...
0
1, 2, 7, 30, 155, 950, 6706, 52996, 459256, 4303020, 43163392, 460170882, 5184956805, 61468942912, 763967696243, 9924157671028, 134400823231643, 1893397004671954, 27693154054839058, 419804185629085664
OFFSET
1,2
EXAMPLE
G.f.: A(x) = x + 2*x*A(x) + 3*x^2*A(A(x)) + 4*x^3*A(A(A(x))) +...
where the initial iterations of the g.f. A(x) begin:
A(x) = x + 2*x^2 + 7*x^3 + 30*x^4 + 155*x^5 + 950*x^6 + 6706*x^7 +...;
A(A(x)) = x + 4*x^2 + 22*x^3 + 138*x^4 + 957*x^5 + 7242*x^6 +...;
A(A(A(x))) = x + 6*x^2 + 45*x^3 + 372*x^4 + 3294*x^5 + 30858*x^6 +...;
A(A(A(A(x)))) = x + 8*x^2 + 76*x^3 + 780*x^4 + 8438*x^5 + 95156*x^6 +...;
A(A(A(A(A(x))))) = x + 10*x^2 + 115*x^3 + 1410*x^4 + 18045*x^5 +...; ...
so: a(1)=1, a(2)=2, a(3) = 2*2 + 3 = 7, a(4) = 2*7 + 3*4 + 4 = 30, ...
PROG
(PARI) {a(n)=local(F=x+x*O(x^n), G=F, H=x); for(i=1, n, for(k=1, n, G=subst(F, x, G); H=H+(k+1)*x^k*G); F=H; G=x+x*O(x^n); H=G); polcoeff(F, n)}
CROSSREFS
Cf. A120567.
Sequence in context: A321735 A030975 A144495 * A066114 A088128 A001053
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 05 2009
STATUS
approved