login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 9*n^2 - 10*n + 3.
4

%I #47 Oct 31 2024 13:39:06

%S 3,2,19,54,107,178,267,374,499,642,803,982,1179,1394,1627,1878,2147,

%T 2434,2739,3062,3403,3762,4139,4534,4947,5378,5827,6294,6779,7282,

%U 7803,8342,8899,9474,10067,10678,11307,11954,12619,13302,14003,14722,15459,16214,16987

%N a(n) = 9*n^2 - 10*n + 3.

%C The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as A154295(n+1)^2 - a(n+1)*A154266(n)^2 = 1. - _Vincenzo Librandi_, Feb 03 2012

%C For n >= 1, the continued fraction expansion of sqrt(a(n)) is [3n-2; {2, 1, 3n-3, 1, 2, 6n-4}]. For n=1, this collapses to [1; {2}]. - _Magus K. Chu_, Sep 05 2022

%H Vincenzo Librandi, <a href="/A154262/b154262.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F From _Vincenzo Librandi_, Feb 02 2012: (Start)

%F G.f.: (3 - 7*x + 22*x^2)/(1-x)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)

%F E.g.f.: (3 - x + 9*x^2)*exp(x). - _Elmo R. Oliveira_, Oct 31 2024

%t LinearRecurrence[{3, -3, 1}, {2, 19, 54}, 50] (* _Vincenzo Librandi_, Feb 02 2012 *)

%t Table[9n^2-10n+3,{n,0,50}] (* _Harvey P. Dale_, Feb 11 2023 *)

%o (PARI) a(n)=9*n^2-10*n+3 \\ _Charles R Greathouse IV_, Dec 27 2011

%o (Magma) I:=[2, 19, 54]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 02 2012

%Y Cf. A154266, A154295.

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Jan 06 2009

%E Edited by _Charles R Greathouse IV_, Jul 25 2010