This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085906 Ramanujan sum c_n(6). 7
 1, 1, 2, -2, -1, 2, -1, 0, -3, -1, -1, -4, -1, -1, -2, 0, -1, -3, -1, 2, -2, -1, -1, 0, 0, -1, 0, 2, -1, -2, -1, 0, -2, -1, 1, 6, -1, -1, -2, 0, -1, -2, -1, 2, 3, -1, -1, 0, 0, 0, -2, 2, -1, 0, 1, 0, -2, -1, -1, 4, -1, -1, 3, 0, 1, -2, -1, 2, -2, 1, -1, 0, -1, -1, 0, 2, 1, -2, -1, 0, 0, -1, -1, 4, 1, -1, -2, 0, -1, 3, 1, 2, -2, -1, 1, 0, -1, 0, 3, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 REFERENCES T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976. LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 Tom M. Apostol, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math. 41 (1972), 281-293. Eckford Cohen, A class of arithmetic functions, Proc. Natl. Acad. Sci. USA 41 (1955), 939-944. A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), 173-188. M. L. Fredman, A symmetry relationship for a class of partitions, J. Combinatorial Theory Ser. A 18 (1975), 199-202. Emiliano Gagliardo, Le funzioni simmetriche semplici delle radici n-esime primitive dell'unità, Bollettino dell'Unione Matematica Italiana Serie 3, 8(3) (1953), 269-273. Otto Hölder, Zur Theorie der Kreisteilungsgleichung K_m(x)=0, Prace mat.-fiz. 43 (1936), 13-23. J. C. Kluyver, Some formulae concerning the integers less than n and prime to n, in: KNAW, Proceedings, 9 I, 1906, Amsterdam, 1906, pp. 408-414; see p. 410. C. A. Nicol, On restricted partitions and a generalization of the Euler phi number and the Moebius function, Proc. Natl. Acad. Sci. USA 39(9) (1953), 963-968. C. A. Nicol and H. S. Vandiver, A von Sterneck arithmetical function and restricted partitions with respect to a modulus, Proc. Natl. Acad. Sci. USA 40(9) (1954), 825-835. K. G. Ramanathan, Some applications of Ramanujan's trigonometrical sum C_m(n), Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69. Srinivasa Ramanujan, On certain trigonometric sums and their applications in the theory of numbers, Trans. Camb. Phil. Soc. 22 (1918), 259-276. M. V. Subbarao, The Brauer-Rademacher identity, Amer. Math. Monthly 72 (1965), 135-138. Peter H. van der Kamp, On the Fourier transform of the greatest common divisor, Integers 13 (2013), #A24. [See Section 3 for historical remarks.] Wikipedia, Ramanujan's sum. Aurel Wintner, On a statistics of the Ramanujan sums, Amer. J. Math., 64(1) (1942), 106-114. FORMULA a(n) = phi(n)*mu(n/gcd(n, 6)) / phi(n/gcd(n, 6)). Dirichlet g.f. (1+2^(1-s)+3^(1-s)+6^(1-s))/zeta(s). - R. J. Mathar, Mar 26 2011 Lambert series and a consequence: Sum_{n >= 1} c_n(6) * z^n / (1 - z^n) = Sum_{s|6} s * z^s and -Sum_{n >= 1} (c_n(6) / n) * log(1 - z^n) = Sum_{s|6} z^s for |z| < 1 (using the principal value of the logarithm). - Petros Hadjicostas, Aug 24 2019 MATHEMATICA f[list_, i_] := list[[i]]; nn = 105; a =Table[MoebiusMu[n], {n, 1, nn}]; b =Table[If[IntegerQ[6/n], n, 0], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Dec 30 2015 *) PROG (PARI) a(n)=eulerphi(n)*moebius(n/gcd(n, 6))/eulerphi(n/gcd(n, 6)) CROSSREFS Cf. A086831, A085097, A085384, A085639 for Ramanujan sums c_n(2) .. c_n(5). Sequence in context: A210580 A284478 A298948 * A221649 A090406 A152723 Adjacent sequences:  A085903 A085904 A085905 * A085907 A085908 A085909 KEYWORD sign,mult AUTHOR Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003 EXTENSIONS More terms from Benoit Cloitre, Aug 18 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 09:59 EDT 2019. Contains 327170 sequences. (Running on oeis4.)