login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085384
Ramanujan sum c_n(4).
6
1, 1, -1, 2, -1, -1, -1, -4, 0, -1, -1, -2, -1, -1, 1, 0, -1, 0, -1, -2, 1, -1, -1, 4, 0, -1, 0, -2, -1, 1, -1, 0, 1, -1, 1, 0, -1, -1, 1, 4, -1, 1, -1, -2, 0, -1, -1, 0, 0, 0, 1, -2, -1, 0, 1, 4, 1, -1, -1, 2, -1, -1, 0, 0, 1, 1, -1, -2, 1, 1, -1, 0, -1, -1, 0, -2, 1, 1, -1, 0, 0, -1, -1, 2
OFFSET
1,4
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
E. C. Titchmarsh and D. R. Heath-Brown, The Theory of the Riemann Zeta-function, 2nd ed., 1986.
R. D. von Sterneck, Ein Analogon zur additiven Zahlentheorie, Sitzungsber. Acad. Wiss. Sapientiae Math.-Naturwiss. Kl. 111 (1902), 1567-1601 (Abt. IIa).
LINKS
Tom M. Apostol, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math. 41 (1972), 281-293.
Eckford Cohen, A class of arithmetic functions, Proc. Natl. Acad. Sci. USA 41 (1955), 939-944.
A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), 173-188.
M. L. Fredman, A symmetry relationship for a class of partitions, J. Combinatorial Theory Ser. A 18 (1975), 199-202.
Otto Hölder, Zur Theorie der Kreisteilungsgleichung K_m(x)=0, Prace mat.-fiz. 43 (1936), 13-23.
J. C. Kluyver, Some formulae concerning the integers less than n and prime to n, in: KNAW, Proceedings, 9 I, 1906, Amsterdam, 1906, pp. 408-414; see p. 410.
C. A. Nicol, On restricted partitions and a generalization of the Euler phi number and the Moebius function, Proc. Natl. Acad. Sci. USA 39(9) (1953), 963-968.
C. A. Nicol and H. S. Vandiver, A von Sterneck arithmetical function and restricted partitions with respect to a modulus, Proc. Natl. Acad. Sci. USA 40(9) (1954), 825-835.
K. G. Ramanathan, Some applications of Ramanujan's trigonometrical sum C_m(n), Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69.
Srinivasa Ramanujan, On certain trigonometric sums and their applications in the theory of numbers, Trans. Camb. Phil. Soc. 22 (1918), 259-276.
Wikipedia, Ramanujan's sum.
Aurel Wintner, On a statistics of the Ramanujan sums, Amer. J. Math., 64(1) (1942), 106-114.
FORMULA
a(n) = phi(n)*mu(n/gcd(n, 4)) / phi(n/gcd(n, 4)).
Dirichlet g.f.: (1+2^(1-s)+4^(1-s))/zeta(s). [Titchmarsh] - R. J. Mathar, Mar 26 2011
Lambert series and a consequence: Sum_{n >= 1} c_n(4) * z^n / (1 - z^n) = Sum_{s|4} s * z^s and -Sum_{n >= 1} (c_n(4) / n) * log(1 - z^n) = Sum_{s|4} z^s for |z| < 1 (using the principal value of the logarithm). - Petros Hadjicostas, Aug 24 2019
From Amiram Eldar, Jan 21 2024: (Start)
Multiplicative with a(2) = 1, a(2^2) = 2, a(2^3) = -4, and a(2^e) = 0 for e >= 4, and for an odd prime p, a(p) = -1, and a(p^e) = 0 for e >= 2.
Sum_{k=1..n} abs(a(k)) ~ (10/Pi^2) * n. (End)
MATHEMATICA
a[n_] := EulerPhi[n] * MoebiusMu[n/GCD[n, 4]] / EulerPhi[n/GCD[n, 4]]; Table[ a[n], {n, 1, 105}]
f[p_, e_] := If[e == 1, -1, 0]; f[2, e_] := Switch[e, 1, 1, 2, 2, 3, -4, _, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 21 2024 *)
PROG
(PARI) a(n)=eulerphi(n)*moebius(n/gcd(n, 4))/eulerphi(n/gcd(n, 4))
KEYWORD
sign,mult
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 12 2003
EXTENSIONS
More terms from Robert G. Wilson v and Benoit Cloitre, Aug 17 2003
STATUS
approved