login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294616
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: Product_{j>0} (1-j^k*x^j)^(1/j).
2
1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -4, 0, -1, 1, -1, -8, -6, -12, 41, 1, -1, -16, -30, -72, 180, -131, 1, -1, -32, -114, -360, 840, -1080, 1499, 1, -1, -64, -390, -1656, 4200, -8640, 15120, -4159, 1, -1, -128, -1266, -7272, 22440, -69120, 161280, -45360
OFFSET
0,9
LINKS
FORMULA
A(0,k) = 1 and A(n,k) = -(n-1)! * Sum_{j=1..n} (Sum_{d|j} d^(k*j/d)) * A(n-j,k)/(n-j)! for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, ...
-1, -2, -4, -8, -16, -32, ...
1, 0, -6, -30, -114, -390, ...
-1, -12, -72, -360, -1656, -7272, ...
41, 180, 840, 4200, 22440, 126600, ...
CROSSREFS
Columns k=0..1 give A028343, A294463.
Rows n=0..3 give A000012, (-1)*A000012, (-1)*A000079, (-1)*A245804.
Cf. A294761.
Sequence in context: A007442 A362483 A054772 * A085384 A067856 A343370
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Nov 05 2017
STATUS
approved