

A155561


Intersection of A000404 and A154777: N = a^2 + b^2 = c^2 + 2d^2 with a,b,c,d>0


2



17, 18, 34, 41, 68, 72, 73, 82, 89, 97, 113, 136, 137, 146, 153, 162, 164, 178, 193, 194, 225, 226, 233, 241, 242, 257, 272, 274, 281, 288, 289, 292, 306, 313, 328, 337, 353, 356, 369, 386, 388, 401, 409, 425, 433, 449, 450, 452, 457, 466, 482, 514, 521, 544
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..54.


EXAMPLE

a(1)=17 is the least number that can be written as A+B and C+2D where A,B,C,D are positive squares (namely 17 = 1^2 + 4^2 = 3^2 + 2*2^2).
a(2)=18 is the second smallest number which figures in A000404 and in A154777 as well.


PROG

(PARI) isA155561(n, /* use optional 2nd arg to get other analogous sequences */c=[2, 1]) = { for( i=1, #c, for( b=1, sqrtint((n1)\c[i]), issquare(nc[i]*b^2) & next(2)); return); 1}
for( n=1, 10^3, isA155561(n) & print1(n", "))


CROSSREFS

Sequence in context: A151978 A111054 A242975 * A231505 A022107 A041584
Adjacent sequences: A155558 A155559 A155560 * A155562 A155563 A155564


KEYWORD

easy,nonn


AUTHOR

M. F. Hasler, Jan 24 2009


STATUS

approved



