login
A155563
Intersection of A001481 and A003136: N = a^2 + b^2 = c^2 + 3d^2 for some integers a,b,c,d.
1
0, 1, 4, 9, 13, 16, 25, 36, 37, 49, 52, 61, 64, 73, 81, 97, 100, 109, 117, 121, 144, 148, 157, 169, 181, 193, 196, 208, 225, 229, 241, 244, 256, 277, 289, 292, 313, 324, 325, 333, 337, 349, 361, 373, 388, 397, 400, 409, 421, 433, 436, 441, 457, 468, 481, 484
OFFSET
1,3
COMMENTS
Contains A155561 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.
LINKS
Ron Lifshitz, Theory of color symmetry for periodic and quasiperiodic crystals, Rev. Mod. Phys. 69, 1181 (1997). This sequence coincides with the row N = 12 of Table VII.
PROG
(PARI) isA155563(n, /* use optional 2nd arg to get other analogous sequences */c=[3, 1]) = { for(i=1, #c, for(b=0, sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
for( n=0, 500, isA155563(n) & print1(n", "))
(PARI) is(n)=(n==0) || (#bnfisintnorm(bnfinit(z^2+z+1), n) && #bnfisintnorm(bnfinit(z^2+1), n));
select(n->is(n), vector(1500, j, j-1)) \\ Joerg Arndt, Jan 11 2015
(Python)
from itertools import count, islice
from sympy import factorint
def A155563_gen(): # generator of terms
return filter(lambda n: all(e & 1 == 0 or (p & 3 != 3 and p % 3 < 2) for p, e in factorint(n).items()), count(0))
A155563_list = list(islice(A155563_gen(), 30)) # Chai Wah Wu, Jun 27 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jan 24 2009
STATUS
approved