login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A033001(n)/4.
15

%I #22 May 27 2023 18:53:58

%S 1,2,9,11,18,19,82,83,99,100,163,164,171,173,738,740,747,748,892,893,

%T 900,902,1467,1469,1476,1477,1540,1541,1557,1558,6643,6644,6660,6661,

%U 6724,6725,6732,6734,8028,8030,8037,8038,8101,8102,8118,8119

%N a(n) = A033001(n)/4.

%C Also: Numbers which, written in base 9, have only digits 0, 1 or 2, and no two adjacent digits equal. - _M. F. Hasler_, Feb 03 2014

%H Robert Israel, <a href="/A043307/b043307.txt">Table of n, a(n) for n = 1..10000</a>

%F From _Robert Israel_, Jan 29 2017: (Start)

%F If a(n) == 0 (mod 3) then a(2*n+1) = 9*a(n) + 1 else a(2*n+1) = 9*a(n).

%F If a(n) == 2 (mod 3) then a(2*n+2) = 9*a(n) + 1 else a(2*n+1) = 9*a(n)+2.

%F a(4k+5) = 9*a(2k+2).

%F (End)

%p A[1]:= [1,2]:

%p for d from 2 to 6 do

%p A[d]:= map(t -> seq(9*t+j,j=subs(t mod 9 = NULL, [0,1,2])), A[d-1])

%p od:

%p seq(op(A[d]),d=1..6); # _Robert Israel_, Jan 29 2017

%t Table[FromDigits[#,9]&/@Select[Tuples[{0,1,2},n],Min[Abs[Differences[#]]]>0&],{n,2,5}]// Flatten// Union (* _Harvey P. Dale_, May 27 2023 *)

%o (PARI) is_A043307(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],9))[2]<3 && n[1]%3!=n[2])||return) \\ _M. F. Hasler_, Feb 03 2014

%o (PARI) a(n) = my(v=binary(n+1)); v[1]=0; for(i=2,#v, v[i]+=(v[i]>=v[i-1])); fromdigits(v,9); \\ _Kevin Ryde_, Mar 13 2021

%Y Cf. A043308 - A043320, A043291, A033001 - A033014, A033016 - A033029.

%K nonn,base

%O 1,2

%A _Clark Kimberling_